Structural and Electrical Investigation of Porous Gaas Layers Prepared by Laser-Induced Etching Method
Keywords:
Porous GaAs, GaAs nanostructures , electrical measurements, Atomic force microscopy, laser induced etching, GaAs nanoparticles statistical distributionAbstract
Gallium arsenide (GaAs) nanostructures are gaining prominence due to their exceptional optoelectronic properties and application potential in devices such as solar cells, LEDs, and transistors. While various fabrication techniques exist for creating GaAs nanostructures, laser-induced etching (LIE) offers a controllable and cost-effective method, particularly for producing porous GaAs layers with tunable morphologies. Despite earlier studies on LIE, there is limited exploration into the microstructural and electrical transformations induced by varying diode laser power densities, especially at 1050 nm wavelength, on (111)-oriented n-type GaAs substrates. This research aims to investigate the structural and electrical properties of porous GaAs layers formed via LIE using diode lasers at multiple power densities, and to evaluate their potential in electronic device fabrication. The AFM analysis revealed that increasing laser power from 0.5 to 9 W/cm² led to a systematic decrease in nanoparticle size (from ~15.73 nm to ~3.47 nm) and a corresponding increase in porous layer thickness (from 2 nm to 81.03 nm). Electrically, Al/porous-GaAs/n-GaAs/Al diodes exhibited enhanced rectification behavior with increasing laser power, attributed to carrier trap formation and heterojunction development. Ideality factors remained close to unity, indicating efficient charge transport. This study uniquely correlates laser power density with both the nanostructure morphology and diode performance, offering a refined understanding of LIE mechanisms. The findings provide practical guidance for tailoring porous GaAs layers for nanoelectronic and optoelectronic devices, and lay the groundwork for further exploration of diode-laser-based fabrication techniques.
References
[1] B. Ganjipour, J. Wallentin, M. T. Borgstrom, L. Samuelson, и C. Thelander, «Tunnel field-effect transistors based on InP-GaAs heterostructure nanowires», ACS Nano, т. 6, сс. 3109–3113, 2012, doi: 10.1021/nn204838m.
[2] P. N. Martin, Z. Aksamija, E. Pop, и U. Ravaioli, «Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires», Nano Lett., т. 10, сс. 1120–1124, 2010, doi: 10.1021/nl902720v.
[3] G. Flamand и J. Poortmans, «Porous GaAs as a possible antireflective coating and optical diffusor for III–V solar cells», Phys. Status Solidi A, т. 202, сс. 1611–1615, 2005, doi: 10.1002/pssa.200461199.
[4] A. Higo, T. Kiba, и J. Takayama, «Photoluminescence of In GaAs/GaAs Quantum Nanodisk in Pillar Fabricated by Biotemplate, Dry Etching and MOVPE Regrowth», ACS Appl. Electron. Mater., т. 1, сс. 1945–1951, 2019, doi: 10.1021/acsaelm.9b00432.
[5] A. Salehi, A. Nikfarjam, и D. J. Kalantari, «Pd/porous-GaAs Schottky contact for hydrogen sensing application», Sens. Actuators B Chem., т. 113, вып. 1, сс. 419–427, 2006, doi: 10.1016/j.snb.2005.03.064.
[6] D. Saxena и др., «Optically pumped room-temperature GaAs nanowire lasers», Nat. Photonics, т. 7, сс. 963–968, 2013, doi: 10.1038/nphoton.2013.303.
[7] E. H. Sánchez-Martínez и others, «Nonlocal Si δ-doping in horizontally-aligned GaAs nanowires», Surf. Interfaces, т. 56, с. 105580, 2025, doi: 10.1016/j.surfin.2024.105580.
[8] S. Sagar и others, «High-efficiency GaAs solar cells with ordered nano-conical frustum arrays for enhanced light trapping and photovoltaic performance», Sol. Energy, т. 288, с. 113299, 2025, doi: 10.1016/j.solener.2025.113299.
[9] T. B. O. Rockett и others, «Growth of GaAsBi/GaAs multiple quantum wells with up to 120 periods», J. Cryst. Growth, т. 589, с. 126679, 2022, doi: 10.1016/j.jcrysgro.2022.126679.
[10] N. Morgan и др., «From Layer-by-Layer Growth to Nanoridge Formation: Selective Area Epitaxy of GaAs by MOVPE», Cryst. Growth Des., т. 23, вып. 7, сс. 5083–5092, 2023, doi: 10.1021/acs.cgd.3c00316.
[11] M. T. Dejarld и др., «Formation of high aspect ratio GaAs nanostructures with metal assisted chemical etching», Nano Lett., т. 11, сс. 49–54, 2011, doi: 10.1021/nl202708d.
[12] L. Cavigli и др., «Fast emission dynamics in droplet epitaxy GaAs ring-disk nanostructures integrated on Si», J. Phys. Condens. Matter, т. 24, вып. 10, с. 104017, 2012, doi: 10.1088/0953-8984/24/10/104017.
[13] Y. Suchikova, S. Kovachov, и Z. Karipbayev, «Express Technology of Electrochemical Etching of Gallium Arsenide for the Formation of Massive Island Pores», в 2023 IEEE 4th KhPI Week on Advanced Technology (KhPIWeek), 2023. doi: 10.1109/KhPIWeek61412.2023.10312896.
[14] V. Kuzmin, D. Mokhov, T. Berezovskaya, A. Monastyrenko, и A. Bouravleuv, «Electrochemical deposition of Ni on arrays of GaAs nanowires with n-type channels», Nanotechnology, т. 36, с. 105601, 2025, doi: 10.1088/1361-6528/ada2f2.
[15] X. Zhu, «Electrical and Optoelectronic Properties Enhancement of n-ZnO/p-GaAs Heterojunction Solar Cells via an Optimized Design for Higher Efficiency», Materials, т. 15, с. 6268, 2022, doi: 10.3390/ma15186268.
[16] B. Joshi и others, «Wavelength dependent laser-induced etching of Cr–O doped GaAs: Morphology studies by SEM and AFM», Bull. Mater. Sci., т. 32, вып. 1, сс. 31–35, 2009, doi: 10.1007/s12034-009-0005-0.
[17] H. S. Mavia, A. K. Shukla, B. S. Chauhan, и S. S. Islam, «Surface morphology and formation of GaAs nanocrystals by laser-induced etching: SEM, PL and Raman studies», Mater. Sci. Eng. B, т. 107, сс. 148–154, 2004, doi: 10.1016/j.mseb.2003.10.101.
[18] E. B. Amara, A. Lebib, и L. Beji, «Structural and Electrical Investigation of Porous GaAs Layers on Different Crystallographically Oriented GaAs Substrates», J. Electron. Mater., т. 49, вып. 9, 2020, doi: 10.1007/s11664-020-08294-5.
[19] H. Villanti и others, «Self-assembled GaAs quantum dashes for direct alignment of liquid crystals on a III–V semiconductor surface», Appl. Phys. Express, т. 18, с. 027001, 2025, doi: 10.35848/1882-0786/adb3eb.
[20] V. Svorcik, V. Rybka, и V. Myslik, «Photoetching of n-GaAs in Na+ and K+ salts», Chem. Phys. Lett., т. 157, вып. 5, сс. 390–392, 1989, doi: 10.1016/0009-2614(89)87268-9.
[21] A. Hernández и others, «Optical properties of porous GaAs formed by low energy ion implantation», Vacuum, т. 171, с. 108976, 2020, doi: 10.1016/j.vacuum.2019.108976.
[22] X. Huang и others, «Morphological engineering of aluminum droplet etched nanoholes for symmetric GaAs quantum dot epitaxy», Nanotechnology, т. 31, с. 495701, 2020, doi: 10.1088/1361-6528/abb1e9.
[23] V. Svorcik, V. Rybka, и V. Myslik, «Laser-stimulated etching of n-type semiconductors», Chem. Phys. Lett., т. 144, вып. 5–6, сс. 548–551, 1988, doi: 10.1016/0009-2614(88)87312-3.
[24] H. S. Mavi, S. S. Islam, S. Rath, B. S. Chauhan, и A. K. Shukla, «Laser-induced etching of Cr-O doped GaAs and wavelength dependent photoluminescence», Mater. Chem. Phys., т. 86, вып. 2–3, сс. 414–419, 2004, doi: 10.1016/j.matchemphys.2004.04.010.
[25] H. Saghrouni, A. Missaoui, R. Hannachi, и L. Beji, «Investigation of the optical and electrical properties of p-type porous GaAs structure», Superlattices Microstruct., т. 64, сс. 507–517, 2013, doi: 10.1016/j.spmi.2013.10.007.
[26] A. Lebib, L. Beji, и N. Hamdaoui, «Investigation of n-ZnO/p-porous GaAs/p-GaAs heterostructure for photodetection applications», Opt. Quantum Electron., т. 56, вып. 4, 2024, doi: 10.1007/s11082-023-06256-9.
[27] Y. Suchikova и others, «Formation of oxide crystallites on the porous GaAs surface by electrochemical deposition», Nanomater. Nanotechnol., т. 12, сс. 1–12, 2022, doi: 10.1177/18479804221127307.
[28] A. Bakdid и others, «Electronic and magnetic properties of quantum ring with two off-center donor atoms», J. Magn. Magn. Mater., т. 621, с. 172891, 2025, doi: 10.1016/j.jmmm.2025.172891.
[29] H. Saghrouni, R. Hannachi, S. Jomni, и L. Beji, «Electrical investigation of the Au/n+–GaAs and Au/n-porous GaAs structures», Phys. B, т. 422, с. 64, 2013, doi: 10.1016/j.physb.2013.04.038.
[30] P. Oksanich, «Effect of Porous GaAs Layer Morphology on Pd/porous GaAs Schottky Contact», J. Nano- Electron. Phys., т. 11, вып. 5, с. 05007, 2019, doi: 10.21272/jnep.11(5).05007.
[31] C. Veerender, M. Nagabhushanam, и V. Haribabu, «Dislocation-assisted complex scattering mobility of electrons in plastically deformed n-GaAs single crystals», J. Alloys Compd., т. 204, вып. 1–2, сс. 37–45, 1994, doi: 10.1016/0925-8388(94)90069-8.
[32] A. A. Madigawa и others, «Deterministic fabrication of GaAs-quantum-dot micropillar single-photon sources», ArXiv Prepr., 2025.
[33] F. M. Ross, G. Oskam, P. C. Searson, J. M. Maculay, и J. A. Liddle, «Crystallographic aspects of pore formation in gallium arsenide and silicon», Philos. Mag. A, т. 75, вып. 2, сс. 525–539, 1997, doi: 10.1080/01418619708205156.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Hassan A. Kadhem, Abdul Hakim Sh. Mohammed

This work is licensed under a Creative Commons Attribution 4.0 International License.