Clean Energy from the Sun: Design and Analysis of Solar Energy Systems
Keywords:
Simulation, Return on Investment, Levelized Cost of Energy, Photovoltaic, Efficiency, Energy systemAbstract
Solar energy has the potential to meet a substantial portion of global energy demands through effective capture and utilization of sunlight. However, economic viability, environmental sustainability, and performance optimization remain critical challenges in large-scale adoption. This study aimed to assess these factors through a photovoltaic (PV) model, considering variables like efficiency, capacity factor, degradation rate, and energy yield. Simulation methods using Matlab-Simulink incorporated local weather trends and advanced modeling tools to predict PV output based on temperature and solar radiation. Economic analyses revealed a competitive Levelized Cost of Energy (LCOE) of $6.50 per kWh, with a 7-year payback period and an 8.5-year Return on Investment (ROI). Environmentally, the PV system demonstrated a low carbon footprint (3,500 kg CO₂eq), with plans for local replanting and ongoing sustainability monitoring. Findings underscore solar energy's feasibility and its role in reducing environmental impact, supporting future clean energy initiatives.
References
[1] A. Kumari, P. Sati, and S. Kumar, “Development of Coating-Resistant Materials at High Temperatures for Waste-to-Energy Plant Application,” Eng. Mater., vol. Part F1843, pp. 31–51, 2024, doi: 10.1007/978-3-031-45534-6_2.
[2] A. Maka, J. Alabid, “Solar Energy Technology and Its Roles in Sustainable Development,” Clean Energy, vol. 6, no. 3, pp. 476–483, Jun. 2022, doi: 10.1093/ce/zkac023.
[3] A. Mottahedi, F. Sereshki, M. Ataei, A. N. Qarahasanlou, and A. Barabadi, “Resilience Estimation of Critical Infrastructure Systems: Application of Expert Judgment,” Reliab. Eng. Syst. Saf., vol. 215, Nov. 2021, doi: 10.1016/j.ress.2021.107794.
[4] A. P. Iswara et al., “A Comparative Study of Life Cycle Impact Assessment Using Different Software Programs,” IOP Conf. Ser. Earth Environ. Sci., vol. 506, no. 1, Jun. 2020, doi: 10.1088/1755-1315/506/1/012002.
[5] A. Palacios, C. Barreneche, M. E. Navarro, and Y. Ding, “Thermal Energy Storage Technologies for Concentrated Solar Power – A Review from a Materials Perspective,” Renew. Energy, vol. 156, pp. 1244–1265, Aug. 2020, doi: 10.1016/j.renene.2019.10.127.
[6] A. Shrivastava et al., “A Study on the Effects of Forced Air-Cooling Enhancements on a 150 W Solar Photovoltaic Thermal Collector for Green Cities,” Sustain. Energy Technol. Assess., vol. 49, Feb. 2022, doi: 10.1016/j.seta.2021.101782.
[7] A. Zahoor, F. Mehr, G. Mao, Y. Yu, and A. Sápi, “The Carbon Neutrality Feasibility of Worldwide and in China’s Transportation Sector by E-Car and Renewable Energy Sources Before 2060,” J. Energy Storage, vol. 61, May 2023, doi: 10.1016/J.EST.2023.106696.
[8] C. Doroody et al., “Impact of High Resistivity Transparent (HRT) Layer in Cadmium Telluride Solar Cells from Numerical Simulation,” J. Renewable Sustain. Energy, vol. 12, no. 2, Mar. 2020, doi: 10.1063/1.5132838.
[9] C. M. S. Kumar et al., “Solar Energy: A Promising Renewable Source for Meeting Energy Demand in Indian Agriculture Applications,” Sustain. Energy Technol. Assess., vol. 55, Feb. 2023, doi: 10.1016/j.seta.2022.102905.
[10] C. S. Lai and M. D. McCulloch, “Sizing of Stand-Alone Solar PV and Storage System with Anaerobic Digestion Biogas Power Plants,” IEEE Trans. Ind. Electron., vol. 64, no. 3, pp. 2112–2121, Mar. 2017, doi: 10.1109/tie.2016.2625781.
[11] E. Hossain, Energy from the Sun, The Sun, Energy, and Climate Change, pp. 123–187, 2023, doi: 10.1007/978-3-031-22196-5_3.
[12] G. M. Wilson et al., “The 2020 Photovoltaic Technologies Roadmap,” J. Phys. D Appl. Phys., vol. 53, no. 49, Dec. 2020, doi: 10.1088/1361-6463/ab9c6a.
[13] I. Sorrenti, Y. Zheng, A. Singlitico, and S. You, “Low-carbon and cost-efficient hydrogen optimisation through a grid-connected electrolyser: The case of GreenLab skive,” Renewable and Sustainable Energy Reviews, vol. 171, p. 113033, Jan. 2023, doi: 10.1016/J.RSER.2022.113033.
[14] M. A. Hossain, E. Khan, A. Mehmood, S. Y. R. Shakoor, and F. B. Ray, “Future Role of Solar PV in Global Energy Transition,” Renew. Sustain. Energy Rev., vol. 151, Jun. 2021, doi: 10.1016/j.rser.2021.111603.
[15] M. Aghaei et al., “Review of Degradation and Failure Phenomena in Photovoltaic Modules,” Renew. Sustain. Energy Rev., vol. 159, May 2022, doi: 10.1016/j.rser.2022.112160.
[16] M. Alktranee and B. Péter, “Energy and exergy analysis for photovoltaic modules cooled by evaporative cooling techniques,” Energy Reports, vol. 9, pp. 122–132, Dec. 2023, doi: 10.1016/J.EGYR.2022.11.177.
[17] M. Hafner and S. Tagliapietra, The Geopolitics of the Global Energy Transition, vol. 73, p. 381, 2020, doi: 10.1007/978-3-030-39066-2.
[18] M. Hedayati, S. Olyaee, and S. M. B. Ghorashi, “The Effect of Adsorbent Layer Thickness and Gallium Concentration on the Efficiency of a Dual-Junction Copper Indium Gallium Diselenide Solar Cell,” J. Electron. Mater., vol. 49, no. 2, pp. 1454–1461, Feb. 2020, doi: 10.1007/s11664-019-07824-0.
[19] M. Liu, “Integration of Carbon Tax Mechanisms in Renewable Energy Policies: Case Study on Australian Renewable Energy Policy,” Renew. Sustain. Energy Rev., vol. 121, Apr. 2021, doi: 10.1016/j.rser.2020.109681.
[20] M. Tawalbeh, A. Al-Othman, F. Kafiah, E. Abdelsalam, F. Almomani, and M. Alkasrawi, “Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook,” Science of The Total Environment, vol. 759, p. 143528, Mar. 2021, doi: 10.1016/J.SCITOTENV.2020.143528.
[21] N. Bolson, P. Prieto, and T. Patzek, “Capacity Factors for Electrical Power Generation from Renewable and Nonrenewable Sources,” Proc. Natl. Acad. Sci. U.S.A., vol. 119, no. 52, Dec. 2022, doi: 10.1073/pnas.2205429119.
[22] N. Mišljenović, Z. Šimić, D. Topić, and G. Knežević, “An Algorithm for the Optimal Sizing of the PV System for Prosumers Based on Economic Indicators and the Input Data Time Step,” Solar Energy, vol. 262, Sep. 2023, doi: 10.1016/j.solener.2023.111882.
[23] N. Rathore, N. L. Panwar, F. Yettou, and A. Gama, “A Comprehensive Review of Different Types of Solar Photovoltaic Cells and Their Applications,” Int. J. Ambient Energy, vol. 42, no. 10, pp. 1200–1217, 2021, doi: 10.1080/01430750.2019.1592774.
[24] N. Saqib et al., “Leveraging Environmental ICT for Carbon Neutrality: Analyzing the Impact of Financial Development, Renewable Energy, and Human Capital in Top Polluting Economies,” Gondwana Res., vol. 126, pp. 305–320, Feb. 2024, doi: 10.1016/j.gr.2023.09.014.
[25] R. Petela, “An approach to the exergy analysis of photosynthesis,” Solar Energy, vol. 82, no. 4, pp. 311–328, Apr. 2008, doi: 10.1016/J.SOLENER.2007.09.002.
[26] S. Kalogirou, Solar Energy Engineering: Processes and Systems, p. 840. Accessed: Jan. 17, 2024. [Online]. Available: https://books.google.com/books/about/Solar_Energy_Engineering.html?id=8C2gEAAAQBAJ
[27] S. Seme, B. Štumberger, M. Hadžiselimović, and K. Sredenšek, “Solar Photovoltaic Tracking Systems for Electricity Generation: A Review,” Energies, vol. 13, no. 16, p. 4224, Aug. 2020, doi: 10.3390/en13164224.
[28] S. Yun et al., “New-Generation Integrated Devices Based on Dye-Sensitized and Perovskite Solar Cells,” Energy Environ. Sci., vol. 11, no. 3, pp. 476–526, Mar. 2018, doi: 10.1039/c7ee03165c.
[29] V. Hyginus et al., “Overview of Renewable Energy Power Generation and Conversion (2015-2023),” 2023, Accessed: Jan. 23, 2024. [Online]. Available: http://dir.muni.ac.ug/handle/20.500.12260/565
[30] V. Palladino, M. Di Somma, C. Cancro, and W. Gao, “Innovative Industrial Solutions for Improving the Technical/Economic Competitiveness of Concentrated Solar Power,” Energies, vol. 17, no. 2, p. 360, Jan. 2024, doi: 10.3390/en17020360.
[31] W. Zhang, Q. Li, P. Zhou, and Q. Fan, “Two-Dimensional γ-PC3: A Novel Direct Band Gap Semiconductor with Ultrahigh Carrier Mobility for Photovoltaics,” Comput. Mater. Sci., vol. 233, Jan. 2024, doi: 10.1016/j.commatsci.2023.112670.
[32] Z. Dong et al., “Assessment of Habitat Suitability for Waterbirds in the West Songnen Plain, China, Using Remote Sensing and GIS,” Ecol. Eng., vol. 55, pp. 94–100, Jun. 2013, doi: 10.1016/j.ecoleng.2013.02.006.