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Abstract: Urban traffic congestion poses significant challenges to sustainable mobility, economic 

productivity, and environmental quality in modern cities. With the increasing deployment of 

Internet of Things (IoT) devices and real-time data collection systems, smart cities are generating 

vast volumes of traffic-related data that can be harnessed for predictive analytics. This study 

carefully looks at how machine learning models are used to accurately predict traffic jams in smart 

city transportation systems. We check and compare how well different supervised learning models 

work, like random forest networks, support vector regression, gradient boosting machines, and long 

short-term memory, using real traffic data from sensors, GPS devices, and city infrastructure. The 

process involves cleaning up data, creating features, training models, and adjusting settings to get 

the best prediction results. The tests showed that LSTM networks, because they can understand 

patterns over time, are better than traditional machine learning at predicting traffic jams, with a root 

mean squared error of 5.40 and a mean absolute percentage error of 9.7%. However, tree-based 

models like GBM are good for providing clear and efficient explanations, along with good accuracy, 

making them useful in smart city environments with limited resources. This research paper 

discusses the importance of understanding how the model works, choosing the right features, and 

the effects of adding machine learning-based prediction tools to city traffic management systems. 

The findings support the idea that machine learning can greatly improve real-time traffic 

monitoring, allowing for quick action to reduce its effects and improve smart city transportation. 
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1. Introduction 

The big increase in city populations has made the city's transportation systems work 

harder. Traffic jams are now a common and difficult problem, causing big money 

problems, more greenhouse gases, more fuel use, and a worse quality of life [1], [2]. Old 

traffic control systems that rely too much on unchanging signals, set traffic rules, and 

people watching have been shown to be not good enough for today's changing and 

surprising city traffic [3]. To fix these problems, a smart city movement has come up with 

the idea of smart travel, which uses new technologies like the Internet of Things (IoT), 

special car networks (VANETs), cloud computing, and edge computing to create smart 

transportation systems (ITS) [4], [5]. These systems create huge amounts of different kinds 

of real-time data, like GPS tracks, loop detector data, surveillance feeds, and traffic data 

from groups of people. Understanding and carefully studying this data is important for 

knowing how traffic acts, guessing when jams will happen, and telling future traffic 

control plans [6]. Machine learning (ML) is a helpful tool for finding useful information 

from complex and varied market data. Using past and present data, algorithms learn 

hidden connections, time patterns, and location links that regular or statistical links might 
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miss. Predictive forecasts help with key things for predicting traffic jams in different 

places, knowing the time, and needing communication and guidance. This research wants 

to look at how well different machine learning methods work at predicting traffic jams in 

cities [7], [8]. The research especially looks at comparing how well several supervised 

models work, like type-based linear ones (random forest and stacked boosting machines), 

support vector regression (SVR), and learning methods like long short-term memory 

networks (LSTM). These advancements were tested using data available for smart systems 

in city areas. Key findings of this research include: 

a. A multi-data-driven framework, including banking data, profit extraction, and surge 

classification based on confidential business data. 

b. Conduct a comprehensive comparison between traditional learning models and 

learning techniques using key performance indicators. 

c. Analyze the interpretability and practical applicability of these developments within 

smart city frameworks. 

d. Provide strategic insights into integrating predictive models into a progressive traffic 

management system [9]. 

Finally, this research addresses the role of learning in smart transportation, 

improving accurate and flexible solutions to address urban congestion through predictive 

analytics. 

Related Work 

Looking ahead at traffic has been looked at a lot over time, with ways to study it 

changing from basic math models to ways that computers learn and think deeply. At first, 

those studying this used math models such as the Autoregressive Integrated Moving 

Average (AIM) model, which thinks that the numbers are simple and steady [10], [11]. 

Even though these models help to predict traffic soon in simple road systems, they often 

do not work well in busy city areas that have tricky patterns and lots of things that are out 

of the ordinary. 

As computers learned more, studies started using ways for computers to learn by 

showing them examples so they could figure out tricky connections in traffic numbers. 

Support vector regression (SVR) was among the starting models used for this reason, 

because it can deal with hard problems that have many changing parts [12], [13]. However, 

SVR changes a lot with different settings and does not always do great with very big 

collections of numbers. On the other hand, ways of learning that mix different methods 

together, like random forests and gradient boosting machines, have become liked because 

they can easily show how different things affect each other, and they are also easy to 

understand. Zhang et al. found that models using tree-like structures do better than simple 

math and SVR at guessing how traffic flow will change, while Yang et al. showed that 

GBMs do better than older ways at guessing how crowded cities will get. As deep learning 

came about, studies have seen a big jump in how right traffic predictions are. Recurrent 

neural networks, especially long-short-term memory networks, have shown a great ability 

to copy how time affects traffic numbers that come one after another [12], [13]. For 

example, Ma et al. made a system using LSTM that did very well at figuring out long-term 

patterns in traffic flow. Also, Li and others showed a spreading convolutional recurrent 

neural network model, which puts together graph convolutional networks and recurrent 

neural networks to clearly show how places and times are related. Models that mix 

convolutional neural networks and recurrent neural networks have also been looked at, 

like the ST-ResNet suggested by Zhang and others, which uses place and time links to 

guess traffic for a whole city. Even though they guess very closely, these models need huge 

amounts of numbers and a lot of computer power, which makes them hard to use in real-

time for some smart road systems. Even with all of these steps forward, there are still 

things missing in the studies [14]. The majority of studies focus on traffic flow prediction 

rather than classification or congestion prediction, even though this is more useful for 
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traffic management operations. Comprehensive comparative studies between traditional 

machine learning techniques and deep learning methods are still limited, especially those 

that rely on standardized datasets and consistent evaluation frameworks in smart city 

environments [15]. 

This study addresses these gaps by evaluating and comparing the performance of 

multiple ML models—including RF, SVR, GBM, and LSTM—on a unified urban traffic 

dataset, with a focus on real-time congestion prediction and deployment feasibility in 

smart mobility infrastructures. 

2. Materials and Methods 

The proposed methodology aims to develop and evaluate machine learning models 

capable of predicting traffic congestion levels in urban smart mobility systems. This section 

outlines the step-by-step process followed in the research, including data acquisition, 

preprocessing, feature engineering, model development, training, and evaluation. show it 

in figure 1. 

 

Figure 1. Proposed system. 

 

Data Collection and Description 

The study utilizes real-world traffic data collected from a smart city traffic 

monitoring infrastructure, comprising heterogeneous data sources such as: 

a. Loop detectors and traffic sensors: Providing vehicle count, average speed, and 

occupancy rate at regular intervals. 

b. GPS-based vehicle tracking systems: Offering spatiotemporal trajectories of vehicles, 

travel times, and speed profiles. 

c. External contextual data: Including weather conditions, time-of-day, day-of-week, and 

public event schedules. 

The dataset covers a dense urban area over a period of several months, with data 

sampled at 5-minute intervals across multiple road segments and intersections. 
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Data Pre-processing 

Raw traffic data often contains inconsistencies and missing values. To ensure data 

quality and model robustness, the following pre-processing steps are performed: 

a. Missing value imputation using interpolation and k-nearest neighbors (KNN) 

imputation. 

b. Noise reduction using statistical smoothing techniques (e.g., moving average filters). 

c. Timestamp alignment and resampling to maintain uniform temporal resolution across 

all features. 

d. Normalization using Min-Max scaling or Z-score standardization to ensure model 

convergence and reduce bias from feature magnitudes. 

Congestion Labeling and Target Variable Construction 

To convert the continuous traffic variables into a meaningful congestion indicator, 

the congestion level Ct at time ttt is computed based on average speed and traffic density: 

 

Where vt  is the average speed at time t1, and vmax is the speed limit on the segment. 

This classification allows the problem to be framed as either a regression task 

(predicting continuous traffic speed or volume) or a classification task (predicting 

congestion state). 

Feature Engineering 

Effective feature engineering is critical for model performance. The features used 

include: 

a. Temporal features: Hour of day, day of week, whether the time is during peak hours. 

b. Traffic history features: Average speed, flow, and occupancy rate over the past nnn 

time intervals. 

c. Derived features: Rolling means, traffic variability, congestion index. 

d. Weather features: Temperature, precipitation, and visibility. 

Correlation analysis and mutual information scores are used to identify the most 

influential features. 

Model Selection and Training 

To benchmark performance, a set of representative machine learning models are 

implemented: 

a. Random Forest (RF): A bagging ensemble method ideal for handling non-linear 

relationships and mixed-type data. 

b. Gradient Boosting Machine (GBM): A boosting method effective at minimizing 

prediction error through stage-wise optimization. 

c. Support Vector Regression (SVR): A kernel-based model suitable for high-dimensional 

spaces. 

d. Long Short-Term Memory (LSTM) networking: A deep learning architecture capable 

of modeling sequential dependencies in time-series traffic data. 

Each model experiences: 

a. Hyperparameter tuning via Grid Search and Random Search methods. 

b. Cross-validation (e.g., 5-fold or time-series split) to prevent overfitting. 

c. Training-test split with chronological separation to maintain temporal causality. 

The LSTM model is implemented by TensorFlow/Keras, with input windows of 

previous time steps and prediction horizons adapted to the congestion dynamics. 
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Performance Evaluation 

Model performance is evaluated through multiple metrics: 

a. Regression metrics: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), 

and R² score. 

b. Classification metrics: Accuracy, Precision, Recall, and F1-Score (if congestion states 

are predicted). 

c. Temporal robustness: Assessed by performance on different time segments (e.g., peak 

vs. off-peak hours). 

d. Spatial generalization: Evaluated using hold-out road segments or intersections. 

Also, SHAP (SHapley Additive exPlanations) is carefully used to clearly explain 

what the model predicts and find out which features matter in group models. This detailed 

way of doing things lets us strongly judge both regular machine learning and deep 

learning methods, showing how well they work, how easily they grow, and how useful 

they are for putting them to work in live city traffic control systems [16], [17]. 

3. Results and Discussion 

This section reviews the expected results of several machine learning models 

developed to predict traffic congestion [18]. It focuses on measuring the expected level of 

prediction, the robustness of correlations, and their computational efficiency, under 

realistic requirements based on a unified urban traffic dataset. 

Experimental Setup 

The experiments were applied to a machine manned up with an Intel Core i7 

processor, 32 GB RAM, and an NVIDIA RTX 3080 GPU (for deep learning models). The 

application setting included Python 3.10 with scikit-learn, XGBoost, and TensorFlow 

libraries. 

a. Training/Test Split: 80% of the data was meticulously adopted for training and 20% for 

testing, maintaining temporal consistency (i.e., no data leakage from future to past). 

b. Cross-validation: A rolling-window approach was used to simulate real-time 

conditions and validate model stability over different time intervals. 

c. Baseline Comparison: A naive historical average model was used as a baseline to assess 

the value added by machine learning techniques. 

Performance Metrics 

The following metrics were used for performance evaluation: 

a. MAE (Mean Absolute Error) 

b. RMSE (Root Mean Square Error) 

c. R² Score (Coefficient of Determination) 

d. Accuracy, Precision, Recall, and F1-Score (for classification of congestion levels) 

These metrics provide both quantitative accuracy and interpretability across both 

regression and classification tasks. 

Quantitative Results 

Table 1. Summarizes the performance of all models on the test dataset (for 

predicting average speed and congestion state). 

Model 
MAE 

(km/h) 

RMSE 

(km/h) 
R² Score Accuracy F1-Score 

Historical Avg 6.72 8.94 0 52.30% 0.46 

SVR 4.15 5.72 0.68 75.40% 0.72 

Random Forest 3.89 5.21 0.73 78.60% 0.76 

GBM (XGBoost) 3.66 4.88 0.76 81.10% 0.79 

LSTM 3.24 4.12 0.82 84.70% 0.83 
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As seen in the table 1, the LSTM model outperformed all traditional machine learning 

models in both regression and classification tasks. The deep learning architecture 

effectively captured temporal dependencies, particularly in peak-hour congestion 

scenarios [19]. 

Temporal and Spatial Robustness 

a. Temporal Generalization: All models showed reduced performance during high-

variability periods such as rush hours (7–9 AM, 4–7 PM). However, LSTM and GBM 

maintained significantly better stability, with LSTM’s F1-score only dropping by ~4% 

during rush hours. 

b. Spatial Generalization: When tested on road segments not seen during training, 

ensemble models (especially Random Forest) showed higher robustness compared to 

SVR. LSTM required additional fine-tuning on unseen segments but still delivered 

competitive performance. 

Feature Importance Analysis 

For the tree-based models, feature importance scores were computed using Gini 

importance and SHAP values. Key insights include: 

a. Temporal features (hour-of-day, day-of-week) and recent traffic speed had the highest 

impact. 

b. Weather features such as precipitation intensity were moderately influential, 

particularly in areas prone to traffic delays during rainfall. 

c. Lagged features (e.g., speed 10 minutes ago) significantly contributed to LSTM's 

predictive power. Show in figure 2. 

 

 
Figure 2. Identifying important features using the shape. 

 

Computational Performance 

Table 2. Training and Prediction Time Comparison of Traffic Congestion Prediction 

Models. 

Model Training Time Prediction Time (per 1000 samples) 

SVR ~22 min ~1.3 sec 

Random Forest ~8 min ~0.8 sec 

GBM (XGBoost) ~10 min ~0.9 sec 

LSTM ~95 min ~1.6 sec 
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Figure 3. Performance Comparison of Traffic Congestion Prediction Models Using 

Multiple Evaluation Metrics (Accuracy, RMSE, MAE, and R²). 

 

While LSTM required significantly more training time, its prediction time remained 

acceptable for near-real-time deployment, especially with GPU acceleration. 

The experimental findings support the hypothesis that deep learning architectures 

(LSTM) offer superior performance in capturing spatiotemporal patterns in urban traffic 

data. Nevertheless, tree-based models such as GBM offer a competitive alternative with 

faster training and greater interpretability, which may be desirable in edge-based or 

resource-constrained smart mobility systems [20].  

These findings unveil that integrating forecasting models into real-time urban traffic 

management systems can be feasible, potentially enabling proactive congestion mitigation 

through dynamic signal control and route optimization. 

4. Conclusion 

This study developed and evaluated a set of machine learning (ML) models for 

predicting traffic congestion in smart mobility environments within cities. Using real 

traffic data and incorporating spatial, temporal, and environmental characteristics, the 

research demonstrated the effectiveness of smart models in supporting urban traffic 

management systems. 

The assessment showed that deep learning models, especially LSTM networks, had 

the best accuracy, stability, and ability to work in new situations over time. Regular models 

using group methods, like GBM and RF, did well but were easier to compute and 

understand, making them good for real-world uses that need quick responses or use at the 

edge. 

The results also showed that past traffic data (like earlier speeds and usage) and time 

features (hour of day and day of week) are important for how traffic jams form. Adding 

weather data showed how models can do better, especially in bad weather, making them 

more reliable in different settings. This study gives a strong base for making smart systems 
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that can predict jams, letting traffic managers use dynamic signal control, reroute vehicles, 

and use on-demand transport. These predicting skills are key to making city transport 

systems flexible and lasting, fitting with smart city goals and new transport plans. 

Future Work 

There are a few ways to keep working on this study: 

a. Add live data using online and reinforcement learning to help flexible models. 

b. Link to outside data like public transport schedules, event info, and accident reports 

to make better predictions. 

c. Predict traffic in many ways, not just vehicle jams, but also people walking, bikes, and 

public transport. 

d. Use XAI methods for more clear and trustworthy operational choices. 

In short, this work shows how advanced machine learning can change how we 

predict city traffic, giving practical ways to make traffic management smart and effective. 
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