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Abstract: This study examines the temporal changes in Al-Sulaymaniyah City, Iraq, through the 

integration of Random Forest land cover classification and road network analysis from 1994 to 

2024. A seven-class land cover classification system was developed using Landsat images from 

various time periods, achieving an overall accuracy of 93% and a Kappa coefficient of 0.90. Urban 

areas expanded significantly, increasing from 132.34 km² (0.78%) in 1994 to 628.27 km² (3.69%) in 

2024. This is a 375% increase, with an annual growth rate of 25.47% from 1994 to 2004. Cropland 

underwent significant fluctuations, decreasing from 2,119.80 km² in 2004 to 636.43 km² by 2004, 

before increasing to 3,257.10 km² by 2024. The density of roads per square kilometer increased 

from 15.035 to 17.231. A co-evolutionary study demonstrated that urban-network interactions 

exhibited complex relationships with a moderate explanatory power (R² = 0.49). Significant 

positive Pearson correlations were seen between the length of roadways in metropolitan regions 

(r = 0.701, p < 0.001) and the density of networks (r = 0.723, p < 0.001). Granger causality studies, 

however, revealed no substantial evidence that urban growth induces road extension (p = 0.5), 

indicating that the two are evolving independently. The urban trend model demonstrated strong 

predictive capability (R² = 0.87), whereas the network development model exhibited only 

moderate predictive capability (R² = 0.58). The results indicate that rapid urbanization has 

surpassed infrastructure development, complicating long-term planning for rapidly expanding 

communities. 

Keywords: Co-evolution Analysis, Random Forest Classification, Road Network Analysis, Urban 

Expansion, GIS. 

1. Introduction 

Global urbanization has occurred so rapidly that it has transformed urban living 

conditions. Currently, over fifty percent of the global population resides in urban areas, 

a figure projected to increase to 68% by 2050 [1]. The extraordinary expansion of urban 

areas has rendered the relationship between transportation infrastructure and land use 

patterns more complex. This is particularly applicable in rapidly expanding cities, 

where the co-evolution of urban land use/land cover (LULC) and road networks serves 

as a principal catalyst for spatial transformation [2], [3]. To design sustainable cities, it 

is essential to comprehend these evolving relationships. Transportation networks 

facilitate urban expansion, alter land utilization, impact environmental risk, and 

influence economic development [4].  

Urban growth and transportation infrastructure mutually influence each other 

throughout time, altering the appearance and functionality of cities. The expansion of 

the road network is a primary factor that alters urban land. This generates accessibility 
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gradients that result in urban sprawl and alterations in land use [5], [6]. 

Simultaneously, urban expansion necessitates more infrastructure investment, 

resulting in heightened travel, which in turn compels the integration of land use and 

transportation systems [7]. This bidirectional association is particularly robust in areas 

rapidly transitioning into urban centers. The rapidity and magnitude of change can 

generate opportunities for efficient growth as well as issues related to environmental 

degradation and social inequality [8]. 

Innovations in remote sensing and geographic information systems (GIS) have 

transformed our ability to observe and analyze complex urban dynamics. The 

integration of multi-temporal satellite imagery and enhanced classification algorithms 

has enabled researchers to monitor alterations in land cover with unprecedented 

accuracy and detail [9]. Random Forest (RF) classifiers are among the most effective 

machine learning methods for land use and land cover (LULC) mapping due to their 

high accuracy, capability to manage noisy data, and proficiency in processing high-

dimensional remote sensing data [10]. The integration of RF-based LULC classification 

with vector-based road network analysis holds significant potential for enhancing our 

understanding of urban evolution and its implications for sustainable development.  

Despite the advent of new technologies, our understanding of effectively 

integrating machine learning-based land use and land cover classification with 

transportation network analysis remains insufficient, particularly in rapidly 

urbanizing areas characterized by limited data and diverse urban environments. Much 

of the existing research examines land use change or transportation network expansion 

in isolation. This complicates our ability to understand their interrelations in all their 

intricacy [11]. Furthermore, RF-based methodologies have demonstrated promise for 

LULC mapping in developed regions; however, their use has been limited in rapidly 

expanding cities characterized by diverse urban configurations[12]. The objective of 

this study is to investigate the interrelationship between urban expansion and the 

development of road networks by employing an integrated methodological framework 

that combines Random Forest-based land use and land cover classification with vector-

based road network analysis.  

The explicit objectives are: (1) to develop a robust methodology for integrating RF-

classified LULC data with historical road network datasets to assess spatiotemporal 

patterns of urban co-evolution; (2) to examine the reciprocal relationships between 

road network expansion and land use transformation in a rapidly urbanizing region; 

(3) to evaluate the efficacy of RF classifiers for LULC mapping in urban environments 

characterized by diverse land types and limited ground truth data; and (4) to provide 

recommendations for sustainable urban planning that considers transportation-land 

use interactions.  

This study contributes several novel insights into the domains of urban studies and 

remote sensing applications. Initially, it establishes a cohesive analytical framework 

that distinctly illustrates the interrelationship between urban growth and 

transportation infrastructure, surpassing prior methodologies that examined both 

phenomena in isolation. Secondly, it facilitates the application of Random Forest 

classifiers for land use and land cover (LULC) mapping in rapidly expanding urban 

areas by addressing data scarcity and significant heterogeneity among cities. Third, 

analyzing various data sources throughout time provides new insights into the 

interaction between transportation and land use. Ultimately, it underscores the 

significance of integrating machine learning and GIS for evidence-based urban 

planning in rapidly evolving cities. 

Literature Review 

In recent decades, our theoretical understanding of urban growth and the 

concurrent evolution of transportation networks has significantly transformed. 

Preliminary research demonstrated that these connections are reciprocal. Lacono et al. 

[13] were the pioneers in examining the temporal correlation between land use and 

road network alterations. They demonstrated how transportation infrastructure both 

influences and is influenced by urban development. This research established concepts 
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that facilitate our understanding of urban growth as a complex adaptive system 

characterized by the dynamic interplay of transportation networks and land use 

patterns through continuous feedback loops. Subsequent research has enhanced our 

understanding of the processes underlying co-evolution. Li et al. developed integrated 

models that demonstrate the simultaneous optimization of land use and transportation 

networks. These models illustrate how improved accessibility can result in both 

efficient urban development and rampant sprawl. Kasraian et al. conducted 

comprehensive analyses of empirical data regarding the interconnections between 

transportation and land use. Consistent tendencies were identified across several 

urban areas; nevertheless, the significance of local characteristics in influencing 

individual outcomes was emphasized. The emergence of these novel concepts has 

rendered co-evolution a fundamental principle for comprehending urban dynamics, 

with implications extending beyond transportation planning to encompass broader 

concerns of sustainability and resilience.  

The application of remote sensing and GIS technologies in urban studies has 

transformed our ability to observe and analyze urban changes. Initially, the primary 

application of these methods was to categorize land cover via conventional supervised 

and unsupervised techniques. Nonetheless, advancements in technology have enabled 

increasingly sophisticated analyses of urban dynamics [14]. Research indicates that 

multi-temporal satellite imagery is effective for monitoring urban expansion, as it may 

detect subtle alterations in land use patterns across time [15], [16]. Researchers may 

now utilize GIS and remote sensing in conjunction to analyze urban dynamics with 

spatial precision. This enables them to assess the correlations between alterations in 

land use and transportation infrastructure. Mo et al. [17] demonstrated how the 

addition of highways in megacities alters the ecological risk of the terrain.  

Machine learning techniques have transformed land use and land cover 

classification, with Random Forest being among the most favored and dependable 

ways. Random Forest classifiers are favored for their capability to handle high-

dimensional remote sensing data while remaining comprehensible and offering 

uncertainty estimations [18], [19]. Comparative analyses have consistently 

demonstrated that RF classifiers outperform conventional statistical methods, 

particularly in complex urban environments characterized by mixed land use patterns 

and spectral confusion among classes. Recent applications of RF in urban areas have 

addressed increasingly complex classification challenges. Mustafa et al. [20] examined 

random forests and support vector machines in cellular automata land use change 

models, demonstrating that ensemble methods more effectively capture urban 

complexity. Similarly, Zhao et al. [21] employed neural network methodologies using 

RF components to strategize land utilization on urban thoroughfares. This illustrates 

how machine learning can assist with operational planning. These enhancements have 

established RF as a standard instrument for LULC mapping; nonetheless, challenges 

regarding data quality and the applicability of results in diverse urban environments 

persist. 

The integration of machine learning-driven land use and land cover classification 

with transportation network analysis represents a novel domain of inquiry in urban 

studies. Despite the thorough development of each component, their integration poses 

significant challenges due to issues related to data harmonization, scale integration, 

and uncertainty propagation. Ahmadzai  was the inaugural researcher to employ 

spatial-based accessibility metrics to examine the interaction between urban land use 

and road networks. This demonstrated that integrated research is feasible, although it 

also highlighted the challenges of data amalgamation. Recent research has begun to 

address these issues with innovative methodologies. Xu et al. [22] developed methods 

to integrate transit accessibility with vector-based cellular automata to model 

alterations in urban land use. This demonstrated how transportation data can enhance 

the accuracy of land use estimates. Raimbault et al. [23] incorporated endogenous 

transport supply into land use-transport interaction models. This illustrates how 

integrated methodologies can more effectively represent the complexity of urban 



 354 
 

  
Vital Annex: International Journal of Novel Research in Advanced Sciences 2025, 4(8), 351-368        https://journals.innoscie.com/index.php/ijnras 

systems. These modifications indicate that integrated methodological frameworks 

could significantly enhance urban co-evolution research. Comparative analyses of co-

evolutionary processes across several cities have revealed both parallels and 

distinctions. Zhao et al. [24] investigated the spatial and temporal characteristics of 

road networks and urban expansion in Beijing, New York, London, and Chicago. Road 

density consistently forecasts urban expansion; however, the patterns vary by region. 

These geographical applications demonstrate that co-evolution ideas can be applied in 

various contexts. They have demonstrated the significance of contextual analysis to 

comprehend operational dynamics within a certain domain and formulate appropriate 

policy responses. 

Despite significant advancements in methodologies and applications, challenges 

persist in the study of urban co-evolution. Data harmonization is challenging due to 

the substantial effort required to ensure that remote sensing pictures and vector-based 

transportation information are accurately aligned in terms of location and time [25]. 

Classification uncertainty in heterogeneous urban environments remains a significant 

challenge, particularly in rapidly expanding cities characterized by complex land use 

patterns and informal settlements that complicate the use of traditional classification 

approaches [26]. 

 

2. Materials and Methods 

Study Area 

Al-Sulaymaniyah City, situated in the Kurdistan Region of northern Iraq, serves 

as a significant urban center in terms of demographics and cultural influence. The city 

is located in a complicated topography encircled by substantial geographical obstacles, 

rendering it an intriguing subject for urban growth modeling (Figure 1). Al-

Sulaymaniyah has experienced substantial and continuous urban expansion in recent 

decades. Between 1991 and 2014, developed land expanded from 13.3% (3,063.78 

hectares) to 41.8% (9,654.26 hectares), indicative of population growth and economic 

advancement. The city is regarded as the cultural center of Kurdistan, with a 3% yearly 

population growth rate. In 1987, 63% of the population resided in urban areas, 

increasing to 78% by 2008, signifying considerable urbanization. The factors 

contributing to heightened urbanization encompass substantial economic 

advancements post-2003 and a rise in development throughout several sectors, 

including residential, commercial, educational, and infrastructural domains. The 

expansion has occurred at the cost of agricultural and open spaces, resulting in 

substantial alterations to the city's land use and land cover configuration. The city's 

transformations rendered an optimal experimental framework for urban modeling 

methodologies that consider nonlinear, spatially intricate growth dynamics, including 

SLEUTH and optimization-based calibrations such as Genetic Algorithms. 

The urban development of Al-Sulaymaniyah is fundamentally linked to its 

transportation infrastructure. The city is situated in an interprovincial junction, 

bordered by the Erbil and Kirkuk governorates to the west and southwest, and has an 

eastern boundary with Iran. The primary road network consists of radial and circular 

configurations that radiate from the city center to peripheral districts and adjacent 

villages. The proliferation of significant transportation corridors is a hallmark of 

contemporary urban development, since construction has focused on principal roads 

and arterial routes owing to enhanced accessibility and economic prospects.  

The region features varied geography, with the Baranan and Chwarta mountains 

to the south, the Tasluja hills to the west, and the Qaiwan range, Azmaer, and Goizha 

mountains to the north and northeast. This mountainous barrier imposes considerable 

topographical constraints and microclimatic fluctuations throughout the city's 

expanding area. The city possesses a semi-arid climate characterized by hot, dry 

summers and cold, moist winters, which affect settlement patterns and urban 

development trajectories [27]. 
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Figure 1. Map of the study area. 

 

Datasets 

Landsat Image Dataset 

Land cover classification was performed with multitemporal Landsat imagery 

over a duration of three decades to assess terrain change. Landsat 5 Thematic Mapper 

(TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational 

Land Imager (OLI) images were obtained for the years 1994, 2004, 2014, and 2024, 

offering decadal insights into land cover transformation. Images were chosen during 

analogous phenological periods to mitigate seasonal fluctuation effects and achieve 

categorization uniformity throughout the temporal series. 

Road Networks. 

The establishment of historical road networks for the research area via a multi-

source methodology that incorporated archival geospatial data, remote sensing 

analysis, and hand digitization techniques. Historical OpenStreetMap (OSM) road data 

constituted the principal basis for modern road network extraction. Historical OSM 

data was obtained via the Overpass API, with filters for highway tags and temporal 

variables pertinent to the study period. The retrieved vector data included essential 

road geometry and attribute information, encompassing road classifications and 

temporal metadata wherever accessible. The Landsat satellite imagery pertinent to the 

study's chronology was meticulously analyzed to identify and digitize road attributes 

absent from existing datasets. Roads were systematically analyzed at suitable scales 

utilizing Geographic Information Systems (GIS) software, which entailed on-screen 

assessment of spectral attributes and spatial configurations indicative of mobility 

corridors. Comprehensive manual modifications were executed to preserve 

topological links, ensuring network connectivity and analytical integrity. This 

procedure encompassed (1) geometric correction of digitized features to rectify 

overshoots, undershoots, and pseudo-nodes; (2) establishing suitable connectivity at 

road intersections; (3) validating network topology through GIS topology rules; and 

(4) assigning temporal parameters to individual road segments via imagery analysis. 

The resulting historical road network database offers a geographically and temporally 

accurate representation of transportation infrastructure history, appropriate for 

SLEUTH modeling. 

Land Cover Classification 

Land Cover Scheme System 

A seven-class land cover classification was established utilizing the Land Cover 
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Categorization System (LCCS) framework, encompassing categories of water, trees, 

flooded vegetation, crops, constructed environments, bare ground, and rangeland 

(Table 1). The training dataset comprised 50 polygon samples per class, each 

containing 10-50 pixels to encapsulate intra-class spectral diversity while preserving 

spatial homogeneity. Training polygons were established through visual analysis of 

high-resolution data and field expertise, guaranteeing representative sampling across 

various landscape conditions within each category. Land cover classification is 

executed with random forest (RF) learning techniques, which use the method's noise 

resilience and ability to manage high-dimensional spectral data. The RF classifier 

utilized all accessible Landsat spectral bands, with the training data divided into 70% 

for training and 30% for validation subsets by stratified random selection to preserve 

class proportionality. The model's performance was assessed over time for 

classification reliability through confusion matrices, overall accuracy metrics, and per-

class producer and user accuracies. 

Random Forest 

Random Forest is an ensemble machine learning technique that uses many 

decision trees to categorize satellite pictures by aggregating the predictions of various 

classifiers.   The technique constructs a forest of decision trees with bootstrap 

aggregating (bagging) and random feature selection.  Each tree is trained on a random 

subset of training data and examines a random selection of characteristics at each split.   

The final classification is determined by the majority vote of the trees within the forest.   

The algorithm's estimation can be expressed as: 
𝑦̂ = mode{𝑇1(𝑥), 𝑇2(𝑥), … , 𝑇𝐵(𝑥)}       

  (1) 

where 𝑦̂ is the predicted class, 𝑇𝐵(𝑥) represents the prediction of the 𝑏 tree for input 

𝑥, and 𝐵 is the total number of trees. The out-of-bag (OOB) error rate is calculated as:  

OOB Error =
1

𝑛
∑ 𝐼(𝑦𝑖 ≠ 𝑦𝑖

𝑂𝑂𝐵̂)  𝑛
𝑖=1       

  (2) 

where 𝑛 is the number of samples, 𝑦𝑖  is the true class label, 𝑦𝑖
𝑂𝑂𝐵 is the OOB 

prediction, and 𝐼(⋅) is the indicator function. Random Forest's effectiveness in satellite 

image classification stems from its ability to handle high-dimensional spectral data, 

reduce overfitting through ensemble averaging, provide feature importance rankings, 

and maintain computational efficiency while delivering robust classification 

performance across diverse land cover types, see Table 1. 

 

Table 1. Land cover scheme based on the Land Cover Classification System (LCCS). 

Land Cover 

Class 
Description 

Water 

Areas that are naturally or artificially covered by water for at 

least most of the year. These include natural lakes, rivers, 

reservoirs, and lagoons. 

Trees 

Areas dominated by woody vegetation consisting of trees 

whose height is generally greater than 5 meters, forming a 

continuous or open canopy. 

Flooded 

Vegetation 

Areas transitional between terrestrial and aquatic systems, 

where water is at or near the surface for a substantial period 

regularly every year. The predominant vegetation comprises 

hydrophytes, such as marshes, swamps, bogs, and mangroves. 

Crops 

Areas where the natural vegetation has been removed or 

modified and replaced by crops or other types of planted and 

cultivated vegetative cover. This includes annual and 

perennial crops, orchards, and plantations (rubber, palm oil, 

etc.), where vegetation is of anthropogenic origin and requires 
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human activity to maintain it in the long term. 

Built Area 

Areas that have an artificial cover as a result of human 

activities such as construction (cities, towns, roads), extraction 

(mines), or waste disposal. These areas are dominated by 

impervious surfaces—such as asphalt, concrete, and 

buildings—with little or no natural vegetation. 

Bare Ground 

Areas with minimal to no vegetation (total vegetative cover 

less than 4% for more than 10 months of the year), including 

bare rock, sand, and deserts. These areas do not have a 

significant artificial cover and are characterized mainly by the 

appearance of the surface, whether consolidated or 

unconsolidated (rock, sand, or soil). 

Rangeland 

Areas dominated by natural or semi-natural herbaceous 

vegetation (graminoids and forbs) and occasionally shrubs, 

used primarily for livestock grazing and wildlife habitat. 

 

Network Analysis 

We employed a comprehensive graph-theoretic approach to convert road 

infrastructure data into mathematical network representations suitable for quantitative 

analysis.   The methodology employs a multi-phase approach encompassing data 

pretreatment, network construction, and metric computation to characterize the 

structural and functional dimensions of the road networks during the study period.   

The initial step in data preprocessing involves loading road vector data from shapefiles 

corresponding to each time period and ensuring uniformity across all datasets.   We 

verify and refine the road geometries to ensure uniformity in shape, and we eliminate 

any characteristics that are either inauthentic or malfunctioning.  

The method of constructing the network transforms the filtered road geometry into 

a mathematical graph by identifying endpoints and categorizing them by location.   

Each road section contributes two endpoints to the overall endpoint collection.  The 

dataset is subsequently spatially grouped utilizing the DBSCAN technique to identify 

topologically related nodes.   The clustering technique groups spatially proximate 

endpoints within a certain tolerance distance, therefore forming junction nodes and 

eliminating geometric irregularities: 

𝐶 = 𝐷𝐵𝑆𝐶𝐴𝑁(𝐸, 𝜖, 𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠)        

 (3) 

where E represents the set of all endpoints, ϵ is the spatial tolerance parameter, and 

𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠  defines the minimum cluster size. The resulting clusters are converted to 

network nodes positioned at cluster centroids:  

𝑛𝑐 =
1

|𝐸𝑐|
∑ 𝑒𝑖𝑒𝑖∈𝐸𝑐

        

  (4) 

where 𝑛𝑐is the centroid position of cluster c, and |𝐸𝑐| is the set of endpoints in 

cluster.  

The graph is built by linking clustered nodes with edges. Each original road 

segment adds an edge that connects the centroids of its start and finish clusters.  Edge 

weights are based on the geometric length of the road segments that connect the two 

nodes. If there are more than one road segment between the same two nodes, the 

lengths of all of them are added together: 
𝑤𝑖𝑗 = ∑ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑟𝑘)𝑘  ∀𝑟𝑘 connecting clusters 𝑖 and 𝑗     

 (5) 

Network simplification is done to make the calculations easier while keeping 

important topological aspects.  The method of simplifying finds and removes degree-

2 nodes (nodes with exactly two connections) while keeping the graph connected by 

combining edges that are next to each other.  When you remove a degree-2 node, the 
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edges that were connected to it are replaced with a single edge whose weight is the 

total of the weights of the original edges: 
𝑤𝑛𝑒𝑤 = 𝑤𝑖𝑗 + 𝑤𝑗𝑘          

  (6) 

where node j with degree 2 is removed, and nodes i and k are directly connected 

with the new cumulative weight. 

Co-evolution of Urban Growth and Network Analysis 

The co-evolution approach employs a comprehensive mathematical framework to 

examine the temporal changes in urban growth patterns and transportation network 

development, as well as their interdependence. This approach integrates temporal 

correlation analysis, geographical association evaluation, causality testing, and 

predictive modeling to ascertain the simultaneous or sequential occurrence of urban 

growth and infrastructure development. Temporal correlation analysis employs 

vectorized statistical processes to identify various correlation metrics between network 

features and urban growth indicators during the study period.  We extract time series 

data as NumPy arrays to facilitate rapid vectorized computations. Urban areas and 

network measurements serve as the foundation for correlation analysis. By employing 

the normalized covariance formula, we may ascertain the Pearson correlation 

coefficients: 

𝑟𝑥𝑦 =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖−𝑦̅)2𝑛

𝑖=1

        

  (7) 

where 𝑥𝑖 and 𝑦𝑖  represent paired observations of urban and network variables, 

respectively. Spearman rank correlation is computed to assess monotonic relationships 

that may not be captured by linear correlation measures. The analysis encompasses 

multiple variable pairs including urban area versus network length, urban area versus 

network density, and urban area versus road density to provide comprehensive 

relationship characterization.  

Spatial correlation analysis uses rasterization to change vector-based urban and 

network data into gridded formats that may be used to look at pixel-level correlations.  

We use geometric presence indicators to turn road networks into raster images. We 

also turn metropolitan regions into binary rasters that show developed and 

underdeveloped pixels.  To make the math easier, sampled pixel arrays are used to 

find the cross-correlation between urban and network rasters: 

𝐶𝑠𝑝𝑎𝑡𝑖𝑎𝑙 =
cov(𝑈𝑠𝑎𝑚𝑝𝑙𝑒,𝑁𝑠𝑎𝑚𝑝𝑙𝑒)

𝜎𝑈𝑠𝑎𝑚𝑝𝑙𝑒
⋅𝜎𝑁𝑠𝑎𝑚𝑝𝑙𝑒

        

  (8) 

where𝑈𝑠𝑎𝑚𝑝𝑙𝑒  and 𝑁𝑠𝑎𝑚𝑝𝑙𝑒  represent sampled urban and network raster values, 

respectively.  

The co-evolution modeling framework uses several regression methods to show 

how urban and network growth are related.  For speed, linear regression models are 

fitted using the normal equation method: 

𝛽 = (XTX)−1XTy
         

  (9) 

where β represents the coefficient vector, X is the design matrix, and y is the 

response vector. Model performance is assessed using the coefficient of determination:  

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦𝑖̂)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

         

  (10) 

where 𝑦𝑖̂ represents predicted values and 𝑦̅ is the response variable mean.  

Causality assessment employs lag correlation analysis to test directional 

relationships between urban growth and network development. The analysis examines 

whether urban development at time t predicts network changes at time t+1, 
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implementing a simplified Granger causality framework:  
𝜌𝑙𝑎𝑔 = corr(𝑈𝑡 , 𝑁𝑡+1)         

  (11) 

where 𝑈𝑡  represents urban development at time t and 𝑁𝑡+1 represents network 

characteristics at the subsequent time period. Statistical significance is assessed 

through correlation magnitude thresholds and bootstrap-based confidence interval 

estimation. 

 

3. Results and Discussion 

Results of Land Cover Mapping 

The supervised classification of land cover had a good overall accuracy for all 

mapped years (Table 2). The study of the confusion matrix demonstrated an overall 

accuracy of 93% and a Kappa coefficient of 0.90, signifying exceptional concordance 

between the classified map and the reference data. Among individual classes, aquatic 

bodies exhibited the highest precision (1.00) but had moderate recall (0.84), yielding an 

F1 score of 0.91. Rangeland demonstrated flawless recall (1.00) and outstanding 

precision (0.90), attaining the maximum F1 score of 0.95. Developed regions exhibited 

exceptional precision (0.99) but diminished recall (0.77), indicating a potential 

underestimating of urban sprawl. Cropland classification had strong performance 

with a precision of 0.97 and a recall of 0.85, but bare ground demonstrated the weakest 

performance metrics, with an F1 score of 0.85. 

The land use maps from 1994, 2004, 2014, and 2024 indicate substantial 

spatiotemporal alterations in land cover patterns throughout the study area (Figure 2, 

Table 3). The most notable change transpired in the allocation of crops and barren 

ground across the observation intervals. In 1994, the terrain was principally defined by 

vast rangeland (13,775.53 km²), with crops localized in particular regions and limited 

urban development mostly observed in the middle section of the study. By 2004, a 

significant alteration in land cover composition was apparent, with bare terrain 

expanding markedly from 694.99 km² to 2,115.25 km²—a more than threefold increase. 

This growth coincided with a substantial decrease in farmland area from 2,119.80 km² 

to merely 636.43 km². The spatial pattern indicates a potential phase of land 

deterioration or agricultural abandonment throughout this decade. The 2014 image 

illustrates a significant reversal of this pattern, with farmland expanding to 3,169.61 

km², while bare terrain diminished to 302.44 km². Urban areas persisted in their 

gradual growth, attaining 434.74 km². The spatial distribution reveals agricultural 

intensification, especially in the northern and central regions of the research area. By 

2024, the terrain stabilized with sustained agricultural preeminence. Cropland 

expanded to 3,257.10 km², marking the greatest extent recorded over all historical 

periods. Developed regions demonstrated steady expansion, increasing to 628.27 

km²—almost a five-fold rise since 1994. Significantly, bare ground diminished to its 

minimal extent (58.98 km²), indicating effective land reclamation or vegetative 

restoration. 

Rangeland, while maintaining its status as the predominant land cover category 

during the research period, underwent a progressive decrease from 13,775.53 km² in 

1994 to 12,807.29 km² in 2024, indicating a 7% loss. This loss of around 968 km² seems 

to have been predominantly transformed into agricultural land and developed regions. 

Water bodies initially expanded from 257.29 km² in 1994 to 292.91 km² in 2004, 

subsequently seeing a slow decline to 233.27 km² by 2024. The 9.4% reduction from 

1994 levels may signify water stress or alterations in water management methods. Tree 

cover demonstrated significant volatility, plummeting from 43.24 km² in 1994 to 

merely 18 km² in 2004 (a 58% decrease), before partially rebounding to 38.29 km² by 

2024. Although this indicates partial recovery, tree cover is still 11.5% lower than the 

levels recorded in 1994. The most notable alteration pertained to the interaction 
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between agriculture and barren terrain. The transient transformation of agricultural 

land to unutilized terrain in 2004, succeeded by an increase in agricultural activities 

beyond prior extents, indicates a significant alteration in land use policy or the 

initiation of an agricultural development initiative post-2004. The near-elimination of 

bare ground by 2024 (a 91.5% reduction from the 2004 high) and a 54% increase in crops 

from 1994 levels exemplifies effective agricultural intensification and land 

rehabilitation initiatives. Urban expansion exhibited the most steady growth trend, 

with developed areas expanding by 374% over the 30-year period. The consistent 

urbanization, expanding from 132.34 km² to 628.27 km², signifies demographic 

pressures and economic advancement in the area. 

 

Figure 2. Land use maps of the study area for the years 1994-2024 based on 

Random Forest supervised classification. 

 

Table 2. Accuracy assessment of the classification process. 

Class Precision Recall F1 Score 

Water 1.00 0.84 0.91 

Crops 0.97 0.85 0.91 

Built Area 0.99 0.77 0.87 

Bare Ground 0.96 0.76 0.85 

Rangeland 0.90 1.00 0.95 

Overall Accuracy 0.93 

Kappa 0.90 

 

Table 3. Area of land use classes for the years 1994-2024. 
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Land use 
Area (km²) 

1994 2004 2014 2024 

Water 257.29 292.91 274.59 233.27 

Trees 43.24 18 23.15 38.29 

Crops 2119.80 636.43 3169.61 3257.10 

Built Area 132.34 387.06 434.74 628.27 

Bare Ground 694.99 2115.25 302.44 58.98 

Rangeland 13775.53 13573.55 12818.66 12807.29 

 

Results of Urban Growth Analysis 

The investigation of urban growth patterns from 1994 to 2024 indicates significant 

temporal and spatial variations in urbanization dynamics within the examined region. 

The urban expansion exhibits a distinctive pattern of rapid growth phases succeeded 

by periods of slower growth, as evidenced by the spatial distribution maps and 

quantitative indicators presented in Table 4. In 1994, the initial urban footprint 

encompassed 132.34 km², or 0.78% of the whole study area (Figure 4). At this time, the 

majority of urban communities were concentrated in the central valley region, with 

development nodes dispersed throughout the landscape. The spatial arrangement 

indicates that the city possesses a polycentric structure, characterized by limited 

linkages among various residential clusters. 

During the initial decade of analysis (1994–2004), the city had the most significant 

transformation, with the urban area expanding to 387.06 km², constituting 2.27% of the 

entire area. During this period, the annual growth rate was an impressive 25.47%, 

resulting in a total increase of 254.72 km² (Table 4). The geographical analysis indicates 

that this growth primarily occurred via infill development within established urban 

centers and the establishment of new settlement zones along transportation corridors 

(Figure 3). The growth observed during this period indicates that cities transitioned 

from isolated nodes to components of extensive networks. 

The subsequent decade (2004–2014) saw a markedly distinct growth pattern. The 

urban expanse expanded to 434.74 km² (2.55% of the total area), however the yearly 

growth rate decreased to 4.77%. The total expansion throughout this period was 47.68 

km², representing the most sluggish growth phase in the study's timeframe (Table 4). 

The spatial distribution pattern (Figure 3) indicates that existing urban areas are 

expanding in size but not significantly extending outward, suggesting a period of 

urban densification rather than extensive horizontal growth.  

Over the past decade (2014–2024), there has been a resurgence in urban expansion, 

with the urban area increasing to 628.27 km², constituting 3.69% of the total area. 

During this period, the area expanded by 19.35% year, totaling 193.53 km² (Table 4). 

The spatial analysis indicates significant expansion at the peripheries, particularly in 

the southern and eastern regions of the study area (Figure 3). The growth pattern 

indicates both extensive development and corridor-based expansion, suggesting a 

complex interplay between planned development and organic urban growth.  

Figure 4 illustrates that urban expansion is not a linear process over time. The 

urbanization curve indicates that the tendency is intensifying over the study period. 

Between 1994 and 2024, the urban area expanded by over 375%, with the greatest 

significant expansion occurring from 1994 to 2004. The overall trajectory indicates that 

urban expansion has not adhered to a consistent linear progression. Instead, it has seen 

periods of significant acceleration followed by relative stabilization, and in the past 

decade, it has begun to ascend again at an accelerated pace. 
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Figure 3. Maps of the urban areas in the study area for 1994, 2004, 2014, and 2024. 

 

 

Figure 4. Urban growth trend in the study area. 
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Table 4. Urban Area Evolution (1994-2024). 

Year 
Urban  

Area (km²) 
Percentage (%) 

Annual Growth 

Rate (%) 

Absolute Growth 

(km²) 

1994 132.34 0.78% /  

2004 387.06 2.27% 25.47% 254.72 

2014 434.74 2.55% 4.77% 47.68 

2024 628.27 3.69% 19.35% 193.53 

 

Results of Network Analysis 

An analysis of the transportation network reveals that the history of road 

infrastructure has mirrored the complex growth patterns of cities in the examined 

region. Significant alterations have occurred in the network's structure over the 

previous thirty years. Figure 5 illustrates the alterations in connection, density, and 

spatial distribution patterns, whereas Table 5 quantifies these changes. In 1994, the 

network's fundamental configuration comprised 17,589 nodes and 18,489 connecting 

edges. The total length of the network was 27.703 kilometers. The network had an 

average degree of 2.102 and a density of 0.000119, equivalent to a road density of 15.035 

km per unit area. The spatial distribution indicates a concentrated network topology, 

characterized by primary arterial routes converging towards the city center. 

Conversely, outlying regions exhibit less connectivity (Figure 5). The network analysis 

indicates that the transportation infrastructure was initially incomplete, signifying the 

existence of isolated road segments and certain areas without connectivity altogether. 

During the initial decade of analysis (1994–2004), the network experienced gradual 

growth. The quantity of nodes increased to 17,941, and the quantity of edges rose to 

18,991, resulting in a total length of 29.131 km. The average degree remained relatively 

constant at 2.117, while the network density exhibited minimal variation at 0.000118. 

The density of roads per square kilometer increased somewhat to 15.266. The physical 

arrangement (Figure 5) indicates that network connectivity has enhanced over time, 

particularly in the central metropolitan districts. Nonetheless, the overall network 

architecture remains fragmented, and connectivity gaps persist. The network 

continued to exhibit indications of disconnection, signifying that complete integration 

had not yet been achieved. Between 2004 and 2014, the network experienced modest 

growth. The quantity of nodes increased to 18,028, while the quantity of edges rose to 

19,077, resulting in a total network length of 32.256 km. The mean degree remained 

constant at 2.116, however the network density experienced a little decline to 0.000117. 

The density of roads per unit area increased to 15.334 km, indicating an improvement 

in transportation infrastructure over time. The spatial analysis (Figure 5) indicates that 

previously poorly connected regions are now more interconnected due to the 

establishment of secondary road networks linking small towns and villages to primary 

transportation corridors. Despite these modifications, the network remained 

unconnected, indicating that structural fragmentation persisted during this period.  

The past decade (2014–2024) seen the most significant transformations in the 

network. The quantity of nodes increased from 21,324 to 22,734, whilst the quantity of 

edges expanded from 22,734 to 38,789 kilometers. This period exhibited the highest 

average degree (2.132) and a significant increase in network density (0.000231), which 

was double that of the preceding decade's value. The road density attained 17.231 km 

per unit area, indicating substantial infrastructural development. The spatial 

distribution (Figure 5) indicates that the network has become denser and now 

encompasses areas that were previously isolated from it. The network exhibits 

enhanced connectivity, featuring more redundancy in pathways, improved 

accessibility to peripheral regions, and superior integration among urban centers. The 

network study indicates that complete connectivity has not been achieved, signifying 

those certain isolated regions or remote areas still lack direct access to the primary 
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transportation network. The alterations in network properties over time exhibit a non-

linear growth pattern, with the most significant changes occurring between 2014 and 

2024. The significant increase in network density over the past decade indicates a 

transition from basic connectivity to comprehensive network integration. This results 

from intentional investments in infrastructure to facilitate the swift expansion of urban 

areas. The persistent disconnection of the network over all study periods indicates the 

presence of geographical obstacles, planned development phases, or infrastructural 

limits that have hindered complete network integration, despite overall improvements 

in connectivity and accessibility (Table 5). 

 

Table 5. Metrics of the road network for all study years. 

Year 
# 

Nodes 

# 

Edges 

Total 

Length 

(km) 

Average 

Degree 

Network 

Density 

Road 

Density 

Is 

connected 

1994 17589 18489 27.703 2.102 0.000119 15.035 False 

2004 17941 18991 29.131 2.117 0.000118 15.266 False 

2014 18028 19077 32.256 2.116 0.000117 15.334 False 

2024 21324 22734 38.789 2.132 0.000231 17.231 False 

 

 

 

Figure 5. Maps of the road networks of Al-Sulaymaniyah city for 1994, 2004, 2014, 

and 2024. 
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Results of Co-evolution of Urban Growth and Network Analysis 

The co-evolutionary analysis of urban expansion and transportation network 

development reveals their mutual dependence and the potential for divergent growth 

patterns throughout the research period. The statistical modeling of these connections 

elucidates the interplay between infrastructure and urban expansion throughout time, 

as well as the impact of these interactions on urban growth. The urban-network 

relationship model exhibits a moderate level of explanatory power, indicated by a R² 

value of 0.49. Nearly fifty percent of the alterations in network development can be 

attributed to urban growth trends (Table 6). The negative coefficient of -0.044 and the 

intercept of 40.61 indicate an unfavorable relationship between urban expansion and 

certain network characteristics. This may be due to fast urban expansion rendering 

network density metrics less precise. This seemingly illogical link may indicate that 

urban expansion has beyond the proportional enhancement of infrastructure, resulting 

in diminished efficiency of networks per unit of metropolitan area during periods of 

rapid growth. The distinct trend analyses indicate that the trajectories of urban and 

network expansion diverge significantly. The urban trend model exhibits substantial 

predictive capability, evidenced by a R² of 0.87, a positive coefficient of 16.105, and an 

intercept of -31,910.91. The robust correlation indicates that urban expansion adheres 

to a highly predictable trajectory across time, characterized by consistent growth rates 

that can be effectively analyzed using linear regression. The network trend model 

accounts for a limited portion of the data, exhibiting a R² of 0.58, a negative coefficient 

of -0.829, and an intercept of 1,688.21. The negative slope indicates a deterioration of 

certain network properties over time. This may be due to the challenges of maintaining 

network density and connection requirements amid rapid urban expansion.  

The causality study provides critical insights into the directional relationship 

between urban expansion and network development. The Granger causality test yields 

a p-value of 0.5, indicating a lack of statistically significant evidence that urban growth 

influences road expansion at conventional significance levels (Table 6). This study 

contradicts the prevailing notion that urban growth necessitates the construction of 

infrastructure. It indicates that network development may occur independently during 

its own planning cycles or in reaction to external factors. The correlation coefficient of 

-0.483 substantiates the negative relationship identified in the regression analysis, 

indicating that as urban areas expand, network performance metrics decline.  

The correlation investigation indicates intricate relationships between metropolitan 

regions and other network characteristics (Table 7). The Pearson correlation between 

metropolitan area and road length indicates a robust positive relationship (r = 0.701, p 

< 0.001), signifying that as cities expand, their road networks often increase in size. The 

Spearman correlation is considerably lower (r = 0.399, p = 0.6), indicating that this 

relationship may not be linear and could be influenced by outliers or non-linear 

patterns. The link between metropolitan area and network density exhibits analogous 

characteristics. It has a robust Pearson correlation (r = 0.723, p < 0.001) but a non-

significant Spearman correlation (r = 0.799, p = 0.2). This indicates the potential 

existence of non-linear relationships or threshold effects in the dynamics of urban-

network density. The correlation between urban area and road density is identical to 

that between road length and road density, exhibiting equivalent correlation 

coefficients (Pearson: r = 0.701, p < 0.001; Spearman: r = 0.399, p = 0.6). This consistency 

indicates that total road length and road density respond similarly to the stresses of 

urban expansion. The analysis of the growth rate correlation reveals a slight positive 

Pearson correlation (r = 0.34, p < 0.001) and a non-significant Spearman correlation (r = 

0.5, p = 0.66). This indicates that correlations between growth rates are not robust and 

may fluctuate over time or exhibit threshold effects. The co-evolutionary approach 

demonstrates that urban expansion and network development occur inside a complex 

adaptive system, wherein certain events transpire simultaneously while others do not. 
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The significant correlations in absolute terms between metropolitan areas and road 

length and density indicate that infrastructure development typically aligns with the 

demands of expanding cities. Nonetheless, the inverse relationships seen in the 

regression models and the absence of clear causality suggest that this response may be 

insufficient or misaligned temporally. The findings indicate that urban expansion may 

be outpacing infrastructure development, potentially resulting in diminished network 

performance metrics despite an increase in road quantity. This is a prevalent trend in 

developing metropolitan systems, since swift growth hampers infrastructure systems' 

ability to maintain service quality and connectivity standards. 

 

Table 6. Results of co-evolution model between urban growth and road networks. 

Co-evolution Model R2 Coefficient/slope Intercept 

Urban-Network Relationship 0.49 -0.044 40.61 

Urban Trend 0.87 16.105 -31910.91 

Network Trend 0.58 -0.829 1688.21 

Causality 

P-value 0.5 

Correlation -0.483 

Urban growth causes road expansion False 

 

Table 7. Results of correlations between urban growth and different road 

network characteristics. 

Correlation Type Pearson Spearman 

Urban Area vs Road Length 0.701 (pvalue=0) 0.399 (pvalue=0.6) 

Urban Area vs Network Density 0.723 (pvalue=0) 0.799 (pvalue=0.2) 

Urban Area vs Road Density 0.701 (pvalue=0) 0.399 (pvalue=0.6) 

Growth Rate 0.34 (pvalue=0) 0.5 (pvalue=0.66) 

 

 

4. Conclusion 

This study uses a combination of Random Forest classification and network 

analysis to give a full picture of the complicated relationship between urban expansion 

and transportation infrastructure in Al-Sulaymaniyah City.  The Random Forest 

classifier worked very well, with an overall accuracy of 93%. This shows that it is a 

good tool for mapping land cover in urban areas with a lot of different types of land, 

even when data is hard to come by in cities that are growing quickly. The quantitative 

analysis shows that Al-Sulaymaniyah underwent an unprecedented urban 

transformation over the course of three decades, with built areas growing by 375% and 

showing non-linear growth patterns that included periods of rapid expansion (1994–

2004 and 2014–2024) and periods of consolidation (2004–2014).  The development of 

the transportation network at the same time, while significant in absolute terms, did 

not keep up with the proportionate increase needed by cities.  The difference is shown 

by the negative connection coefficients in co-evolutionary models and the fact that 

there is no statistically meaningful link between urban expansion and infrastructure 

provision. The correlation study shows that there is a big gap between the procedures 

of planning for urban growth and planning for infrastructure.  There are large positive 

correlations between metropolitan areas and absolute network metrics, but there is no 

Granger causality. This means that transportation infrastructure expansion happens 

on its own planning cycles instead than in response to urban needs.  This trend 

suggests that there may be problems with governance when cities grow faster than 

their infrastructure can handle, which raises questions about the long-term 

sustainability of urban development. 

The methods used in this study can be used in other cities besides Al-

Sulaymaniyah to explore how cities evolve together.  Combining machine learning-
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based classification with graph-theoretic network analysis could be very useful for 

evidence-based urban planning in places where there isn't a lot of data.  The results 

stress how important it is to build infrastructure ahead of time so that it can handle the 

challenges of urban growth instead of just reacting to them. Future urban planning 

should focus on coordinated development methods that make sure infrastructure is 

built in line with the way cities are growing.  The study shows that sustainable urban 

development needs governance systems that can coordinate land use planning with 

the building of transportation infrastructure.  These ideas are especially important for 

cities in developing areas that are growing quickly, where comparable problems with 

co-evolution could hurt long-term sustainability and livability. 
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