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Abstract: This study examines the temporal changes in Al-Sulaymaniyah City, Iraq, through the
integration of Random Forest land cover classification and road network analysis from 1994 to
2024. A seven-class land cover classification system was developed using Landsat images from
various time periods, achieving an overall accuracy of 93% and a Kappa coefficient of 0.90. Urban
areas expanded significantly, increasing from 132.34 km? (0.78%) in 1994 to 628.27 km? (3.69%) in
2024. This is a 375% increase, with an annual growth rate of 25.47% from 1994 to 2004. Cropland
underwent significant fluctuations, decreasing from 2,119.80 km? in 2004 to 636.43 km? by 2004,
before increasing to 3,257.10 km? by 2024. The density of roads per square kilometer increased
from 15.035 to 17.231. A co-evolutionary study demonstrated that urban-network interactions
exhibited complex relationships with a moderate explanatory power (R? = 0.49). Significant
positive Pearson correlations were seen between the length of roadways in metropolitan regions
(r=0.701, p <0.001) and the density of networks (r = 0.723, p < 0.001). Granger causality studies,
however, revealed no substantial evidence that urban growth induces road extension (p = 0.5),
indicating that the two are evolving independently. The urban trend model demonstrated strong
predictive capability (R? = 0.87), whereas the network development model exhibited only
moderate predictive capability (R? = 0.58). The results indicate that rapid urbanization has
surpassed infrastructure development, complicating long-term planning for rapidly expanding
communities.

Keywords: Co-evolution Analysis, Random Forest Classification, Road Network Analysis, Urban
Expansion, GIS.

1. Introduction

Global urbanization has occurred so rapidly that it has transformed urban living
conditions. Currently, over fifty percent of the global population resides in urban areas,
a figure projected to increase to 68% by 2050 [1]. The extraordinary expansion of urban
areas has rendered the relationship between transportation infrastructure and land use
patterns more complex. This is particularly applicable in rapidly expanding cities,
where the co-evolution of urban land use/land cover (LULC) and road networks serves
as a principal catalyst for spatial transformation [2], [3]. To design sustainable cities, it
is essential to comprehend these evolving relationships. Transportation networks
facilitate urban expansion, alter land utilization, impact environmental risk, and
influence economic development [4].

Urban growth and transportation infrastructure mutually influence each other
throughout time, altering the appearance and functionality of cities. The expansion of
the road network is a primary factor that alters urban land. This generates accessibility
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gradients that result in urban sprawl and alterations in land use [5], [6].
Simultaneously, urban expansion necessitates more infrastructure investment,
resulting in heightened travel, which in turn compels the integration of land use and
transportation systems [7]. This bidirectional association is particularly robust in areas
rapidly transitioning into urban centers. The rapidity and magnitude of change can
generate opportunities for efficient growth as well as issues related to environmental
degradation and social inequality [8].

Innovations in remote sensing and geographic information systems (GIS) have
transformed our ability to observe and analyze complex urban dynamics. The
integration of multi-temporal satellite imagery and enhanced classification algorithms
has enabled researchers to monitor alterations in land cover with unprecedented
accuracy and detail [9]. Random Forest (RF) classifiers are among the most effective
machine learning methods for land use and land cover (LULC) mapping due to their
high accuracy, capability to manage noisy data, and proficiency in processing high-
dimensional remote sensing data [10]. The integration of RF-based LULC classification
with vector-based road network analysis holds significant potential for enhancing our
understanding of urban evolution and its implications for sustainable development.

Despite the advent of new technologies, our understanding of effectively
integrating machine learning-based land use and land cover classification with
transportation network analysis remains insufficient, particularly in rapidly
urbanizing areas characterized by limited data and diverse urban environments. Much
of the existing research examines land use change or transportation network expansion
in isolation. This complicates our ability to understand their interrelations in all their
intricacy [11]. Furthermore, RF-based methodologies have demonstrated promise for
LULC mapping in developed regions; however, their use has been limited in rapidly
expanding cities characterized by diverse urban configurations[12]. The objective of
this study is to investigate the interrelationship between urban expansion and the
development of road networks by employing an integrated methodological framework
that combines Random Forest-based land use and land cover classification with vector-
based road network analysis.

The explicit objectives are: (1) to develop a robust methodology for integrating RF-
classified LULC data with historical road network datasets to assess spatiotemporal
patterns of urban co-evolution; (2) to examine the reciprocal relationships between
road network expansion and land use transformation in a rapidly urbanizing region;
(3) to evaluate the efficacy of RF classifiers for LULC mapping in urban environments
characterized by diverse land types and limited ground truth data; and (4) to provide
recommendations for sustainable urban planning that considers transportation-land
use interactions.

This study contributes several novel insights into the domains of urban studies and
remote sensing applications. Initially, it establishes a cohesive analytical framework
that distinctly illustrates the interrelationship between wurban growth and
transportation infrastructure, surpassing prior methodologies that examined both
phenomena in isolation. Secondly, it facilitates the application of Random Forest
classifiers for land use and land cover (LULC) mapping in rapidly expanding urban
areas by addressing data scarcity and significant heterogeneity among cities. Third,
analyzing various data sources throughout time provides new insights into the
interaction between transportation and land use. Ultimately, it underscores the
significance of integrating machine learning and GIS for evidence-based urban
planning in rapidly evolving cities.

Literature Review

In recent decades, our theoretical understanding of urban growth and the
concurrent evolution of transportation networks has significantly transformed.
Preliminary research demonstrated that these connections are reciprocal. Lacono et al.
[13] were the pioneers in examining the temporal correlation between land use and
road network alterations. They demonstrated how transportation infrastructure both
influences and is influenced by urban development. This research established concepts
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that facilitate our understanding of urban growth as a complex adaptive system
characterized by the dynamic interplay of transportation networks and land use
patterns through continuous feedback loops. Subsequent research has enhanced our
understanding of the processes underlying co-evolution. Li et al. developed integrated
models that demonstrate the simultaneous optimization of land use and transportation
networks. These models illustrate how improved accessibility can result in both
efficient urban development and rampant sprawl. Kasraian et al. conducted
comprehensive analyses of empirical data regarding the interconnections between
transportation and land use. Consistent tendencies were identified across several
urban areas; nevertheless, the significance of local characteristics in influencing
individual outcomes was emphasized. The emergence of these novel concepts has
rendered co-evolution a fundamental principle for comprehending urban dynamics,
with implications extending beyond transportation planning to encompass broader
concerns of sustainability and resilience.

The application of remote sensing and GIS technologies in urban studies has
transformed our ability to observe and analyze urban changes. Initially, the primary
application of these methods was to categorize land cover via conventional supervised
and unsupervised techniques. Nonetheless, advancements in technology have enabled
increasingly sophisticated analyses of urban dynamics [14]. Research indicates that
multi-temporal satellite imagery is effective for monitoring urban expansion, as it may
detect subtle alterations in land use patterns across time [15], [16]. Researchers may
now utilize GIS and remote sensing in conjunction to analyze urban dynamics with
spatial precision. This enables them to assess the correlations between alterations in
land use and transportation infrastructure. Mo et al. [17] demonstrated how the
addition of highways in megacities alters the ecological risk of the terrain.

Machine learning techniques have transformed land use and land cover
classification, with Random Forest being among the most favored and dependable
ways. Random Forest classifiers are favored for their capability to handle high-
dimensional remote sensing data while remaining comprehensible and offering
uncertainty estimations [18], [19]. Comparative analyses have consistently
demonstrated that RF classifiers outperform conventional statistical methods,
particularly in complex urban environments characterized by mixed land use patterns
and spectral confusion among classes. Recent applications of RF in urban areas have
addressed increasingly complex classification challenges. Mustafa et al. [20] examined
random forests and support vector machines in cellular automata land use change
models, demonstrating that ensemble methods more effectively capture urban
complexity. Similarly, Zhao et al. [21] employed neural network methodologies using
RF components to strategize land utilization on urban thoroughfares. This illustrates
how machine learning can assist with operational planning. These enhancements have
established RF as a standard instrument for LULC mapping; nonetheless, challenges
regarding data quality and the applicability of results in diverse urban environments
persist.

The integration of machine learning-driven land use and land cover classification
with transportation network analysis represents a novel domain of inquiry in urban
studies. Despite the thorough development of each component, their integration poses
significant challenges due to issues related to data harmonization, scale integration,
and uncertainty propagation. Ahmadzai was the inaugural researcher to employ
spatial-based accessibility metrics to examine the interaction between urban land use
and road networks. This demonstrated that integrated research is feasible, although it
also highlighted the challenges of data amalgamation. Recent research has begun to
address these issues with innovative methodologies. Xu et al. [22] developed methods
to integrate transit accessibility with vector-based cellular automata to model
alterations in urban land use. This demonstrated how transportation data can enhance
the accuracy of land use estimates. Raimbault et al. [23] incorporated endogenous
transport supply into land use-transport interaction models. This illustrates how
integrated methodologies can more effectively represent the complexity of urban
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systems. These modifications indicate that integrated methodological frameworks
could significantly enhance urban co-evolution research. Comparative analyses of co-
evolutionary processes across several cities have revealed both parallels and
distinctions. Zhao et al. [24] investigated the spatial and temporal characteristics of
road networks and urban expansion in Beijing, New York, London, and Chicago. Road
density consistently forecasts urban expansion; however, the patterns vary by region.
These geographical applications demonstrate that co-evolution ideas can be applied in
various contexts. They have demonstrated the significance of contextual analysis to
comprehend operational dynamics within a certain domain and formulate appropriate
policy responses.

Despite significant advancements in methodologies and applications, challenges
persist in the study of urban co-evolution. Data harmonization is challenging due to
the substantial effort required to ensure that remote sensing pictures and vector-based
transportation information are accurately aligned in terms of location and time [25].
Classification uncertainty in heterogeneous urban environments remains a significant
challenge, particularly in rapidly expanding cities characterized by complex land use
patterns and informal settlements that complicate the use of traditional classification
approaches [26].

2. Materials and Methods
Study Area

Al-Sulaymaniyah City, situated in the Kurdistan Region of northern Iraq, serves
as a significant urban center in terms of demographics and cultural influence. The city
is located in a complicated topography encircled by substantial geographical obstacles,
rendering it an intriguing subject for urban growth modeling (Figure 1). Al-
Sulaymaniyah has experienced substantial and continuous urban expansion in recent
decades. Between 1991 and 2014, developed land expanded from 13.3% (3,063.78
hectares) to 41.8% (9,654.26 hectares), indicative of population growth and economic
advancement. The city is regarded as the cultural center of Kurdistan, with a 3% yearly
population growth rate. In 1987, 63% of the population resided in urban areas,
increasing to 78% by 2008, signifying considerable urbanization. The factors
contributing to heightened urbanization encompass substantial economic
advancements post-2003 and a rise in development throughout several sectors,
including residential, commercial, educational, and infrastructural domains. The
expansion has occurred at the cost of agricultural and open spaces, resulting in
substantial alterations to the city's land use and land cover configuration. The city's
transformations rendered an optimal experimental framework for urban modeling
methodologies that consider nonlinear, spatially intricate growth dynamics, including
SLEUTH and optimization-based calibrations such as Genetic Algorithms.

The urban development of Al-Sulaymaniyah is fundamentally linked to its
transportation infrastructure. The city is situated in an interprovincial junction,
bordered by the Erbil and Kirkuk governorates to the west and southwest, and has an
eastern boundary with Iran. The primary road network consists of radial and circular
configurations that radiate from the city center to peripheral districts and adjacent
villages. The proliferation of significant transportation corridors is a hallmark of
contemporary urban development, since construction has focused on principal roads
and arterial routes owing to enhanced accessibility and economic prospects.

The region features varied geography, with the Baranan and Chwarta mountains
to the south, the Tasluja hills to the west, and the Qaiwan range, Azmaer, and Goizha
mountains to the north and northeast. This mountainous barrier imposes considerable
topographical constraints and microclimatic fluctuations throughout the city's
expanding area. The city possesses a semi-arid climate characterized by hot, dry
summers and cold, moist winters, which affect settlement patterns and urban
development trajectories [27].
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Figure 1. Map of the study area.
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Datasets
Landsat Image Dataset

Land cover classification was performed with multitemporal Landsat imagery
over a duration of three decades to assess terrain change. Landsat 5 Thematic Mapper
(TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational
Land Imager (OLI) images were obtained for the years 1994, 2004, 2014, and 2024,
offering decadal insights into land cover transformation. Images were chosen during
analogous phenological periods to mitigate seasonal fluctuation effects and achieve
categorization uniformity throughout the temporal series.

Road Networks.

The establishment of historical road networks for the research area via a multi-
source methodology that incorporated archival geospatial data, remote sensing
analysis, and hand digitization techniques. Historical OpenStreetMap (OSM) road data
constituted the principal basis for modern road network extraction. Historical OSM
data was obtained via the Overpass API, with filters for highway tags and temporal
variables pertinent to the study period. The retrieved vector data included essential
road geometry and attribute information, encompassing road classifications and
temporal metadata wherever accessible. The Landsat satellite imagery pertinent to the
study's chronology was meticulously analyzed to identify and digitize road attributes
absent from existing datasets. Roads were systematically analyzed at suitable scales
utilizing Geographic Information Systems (GIS) software, which entailed on-screen
assessment of spectral attributes and spatial configurations indicative of mobility
corridors. Comprehensive manual modifications were executed to preserve
topological links, ensuring network connectivity and analytical integrity. This
procedure encompassed (1) geometric correction of digitized features to rectify
overshoots, undershoots, and pseudo-nodes; (2) establishing suitable connectivity at
road intersections; (3) validating network topology through GIS topology rules; and
(4) assigning temporal parameters to individual road segments via imagery analysis.
The resulting historical road network database offers a geographically and temporally
accurate representation of transportation infrastructure history, appropriate for
SLEUTH modeling.

Land Cover Classification
Land Cover Scheme System
A seven-class land cover classification was established utilizing the Land Cover
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Categorization System (LCCS) framework, encompassing categories of water, trees,
flooded vegetation, crops, constructed environments, bare ground, and rangeland
(Table 1). The training dataset comprised 50 polygon samples per class, each
containing 10-50 pixels to encapsulate intra-class spectral diversity while preserving
spatial homogeneity. Training polygons were established through visual analysis of
high-resolution data and field expertise, guaranteeing representative sampling across
various landscape conditions within each category. Land cover classification is
executed with random forest (RF) learning techniques, which use the method's noise
resilience and ability to manage high-dimensional spectral data. The RF classifier
utilized all accessible Landsat spectral bands, with the training data divided into 70%
for training and 30% for validation subsets by stratified random selection to preserve
class proportionality. The model's performance was assessed over time for
classification reliability through confusion matrices, overall accuracy metrics, and per-
class producer and user accuracies.
Random Forest

Random Forest is an ensemble machine learning technique that uses many
decision trees to categorize satellite pictures by aggregating the predictions of various
classifiers.  The technique constructs a forest of decision trees with bootstrap
aggregating (bagging) and random feature selection. Each tree is trained on a random
subset of training data and examines a random selection of characteristics at each split.
The final classification is determined by the majority vote of the trees within the forest.
The algorithm's estimation can be expressed as:

¥ = mode{T, (x), T, (x), ..., Tg (x)}

)

where J is the predicted class, T (x) represents the prediction of the b tree for input
x, and B is the total number of trees. The out-of-bag (OOB) error rate is calculated as:

OOB Error = %Z?=1I(yi * }Z‘ﬁ)

)

where n is the number of samples, y; is the true class label, y?°% is the OOB
prediction, and I(+) is the indicator function. Random Forest's effectiveness in satellite
image classification stems from its ability to handle high-dimensional spectral data,
reduce overfitting through ensemble averaging, provide feature importance rankings,
and maintain computational efficiency while delivering robust -classification
performance across diverse land cover types, see Table 1.

Table 1. Land cover scheme based on the Land Cover Classification System (LCCS).

Land Cover
Class

Description

Areas that are naturally or artificially covered by water for at
Water least most of the year. These include natural lakes, rivers,
reservoirs, and lagoons.

Areas dominated by woody vegetation consisting of trees
Trees whose height is generally greater than 5 meters, forming a
continuous or open canopy.

Areas transitional between terrestrial and aquatic systems,
Flooded where water is at or near the surface for a substantial period
Vegetation regularly every year. The predominant vegetation comprises
hydrophytes, such as marshes, swamps, bogs, and mangroves.

Areas where the natural vegetation has been removed or
modified and replaced by crops or other types of planted and
Crops cultivated vegetative cover. This includes annual and
perennial crops, orchards, and plantations (rubber, palm oil,

etc.), where vegetation is of anthropogenic origin and requires
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human activity to maintain it in the long term.

Areas that have an artificial cover as a result of human
activities such as construction (cities, towns, roads), extraction
Built Area (mines), or waste disposal. These areas are dominated by
impervious surfaces—such as asphalt, concrete, and
buildings —with little or no natural vegetation.

Areas with minimal to no vegetation (total vegetative cover
less than 4% for more than 10 months of the year), including
bare rock, sand, and deserts. These areas do not have a

Bare Ground s o s . .
significant artificial cover and are characterized mainly by the
appearance of the surface, whether consolidated or

unconsolidated (rock, sand, or soil).

Areas dominated by natural or semi-natural herbaceous
Rangeland vegetation (graminoids and forbs) and occasionally shrubs,
used primarily for livestock grazing and wildlife habitat.

Network Analysis

We employed a comprehensive graph-theoretic approach to convert road
infrastructure data into mathematical network representations suitable for quantitative
analysis. The methodology employs a multi-phase approach encompassing data
pretreatment, network construction, and metric computation to characterize the
structural and functional dimensions of the road networks during the study period.
The initial step in data preprocessing involves loading road vector data from shapefiles
corresponding to each time period and ensuring uniformity across all datasets. We
verify and refine the road geometries to ensure uniformity in shape, and we eliminate
any characteristics that are either inauthentic or malfunctioning.

The method of constructing the network transforms the filtered road geometry into
a mathematical graph by identifying endpoints and categorizing them by location.
Each road section contributes two endpoints to the overall endpoint collection. The
dataset is subsequently spatially grouped utilizing the DBSCAN technique to identify
topologically related nodes. The clustering technique groups spatially proximate
endpoints within a certain tolerance distance, therefore forming junction nodes and
eliminating geometric irregularities:

C = DBSCAN(E, €, minsgmpies)

®)

where E represents the set of all endpoints, € is the spatial tolerance parameter, and
MiNggmpies defines the minimum cluster size. The resulting clusters are converted to
network nodes positioned at cluster centroids:

ne = |ELC|ZeiEEC €
4)

where n.is the centroid position of cluster ¢, and |E.| is the set of endpoints in
cluster.

The graph is built by linking clustered nodes with edges. Each original road
segment adds an edge that connects the centroids of its start and finish clusters. Edge
weights are based on the geometric length of the road segments that connect the two
nodes. If there are more than one road segment between the same two nodes, the
lengths of all of them are added together:

w;;j = X length(r,) V7, connecting clusters i and j

®)

Network simplification is done to make the calculations easier while keeping
important topological aspects. The method of simplifying finds and removes degree-
2 nodes (nodes with exactly two connections) while keeping the graph connected by
combining edges that are next to each other. When you remove a degree-2 node, the
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edges that were connected to it are replaced with a single edge whose weight is the
total of the weights of the original edges:

Whew = Wij + Wik

(6)

where node j with degree 2 is removed, and nodes i and k are directly connected
with the new cumulative weight.
Co-evolution of Urban Growth and Network Analysis

The co-evolution approach employs a comprehensive mathematical framework to
examine the temporal changes in urban growth patterns and transportation network
development, as well as their interdependence. This approach integrates temporal
correlation analysis, geographical association evaluation, causality testing, and
predictive modeling to ascertain the simultaneous or sequential occurrence of urban
growth and infrastructure development. Temporal correlation analysis employs
vectorized statistical processes to identify various correlation metrics between network
features and urban growth indicators during the study period. We extract time series
data as NumPy arrays to facilitate rapid vectorized computations. Urban areas and
network measurements serve as the foundation for correlation analysis. By employing
the normalized covariance formula, we may ascertain the Pearson correlation

coefficients:
=) (yi-¥)

\/2?:1(961'_)2)2 Z?;l(yi—?)z

?)

where x; and y; represent paired observations of urban and network variables,

Ty

respectively. Spearman rank correlation is computed to assess monotonic relationships
that may not be captured by linear correlation measures. The analysis encompasses
multiple variable pairs including urban area versus network length, urban area versus
network density, and urban area versus road density to provide comprehensive
relationship characterization.

Spatial correlation analysis uses rasterization to change vector-based urban and
network data into gridded formats that may be used to look at pixel-level correlations.
We use geometric presence indicators to turn road networks into raster images. We
also turn metropolitan regions into binary rasters that show developed and
underdeveloped pixels. To make the math easier, sampled pixel arrays are used to
find the cross-correlation between urban and network rasters:

COV(Usample'Nsample)

Cspatial = P
Usample “Nsample

®)

whereUsgmpie and Nggmpie represent sampled urban and network raster values,
respectively.

The co-evolution modeling framework uses several regression methods to show
how urban and network growth are related. For speed, linear regression models are
fitted using the normal equation method:

B = (XTX)—IXTY

©)
where [ represents the coefficient vector, X is the design matrix, and y is the
response vector. Model performance is assessed using the coefficient of determination:
2 0i-)?
R = 1= oy
(10)

where ¥, represents predicted values and y is the response variable mean.

Causality assessment employs lag correlation analysis to test directional
relationships between urban growth and network development. The analysis examines
whether urban development at time t predicts network changes at time t+1,
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implementing a simplified Granger causality framework:
Piag = corr(Uy, Ni44)
(11)
where U, represents urban development at time t and N, represents network
characteristics at the subsequent time period. Statistical significance is assessed
through correlation magnitude thresholds and bootstrap-based confidence interval
estimation.

3. Results and Discussion
Results of Land Cover Mapping

The supervised classification of land cover had a good overall accuracy for all
mapped years (Table 2). The study of the confusion matrix demonstrated an overall
accuracy of 93% and a Kappa coefficient of 0.90, signifying exceptional concordance
between the classified map and the reference data. Among individual classes, aquatic
bodies exhibited the highest precision (1.00) but had moderate recall (0.84), yielding an
F1 score of 0.91. Rangeland demonstrated flawless recall (1.00) and outstanding
precision (0.90), attaining the maximum F1 score of 0.95. Developed regions exhibited
exceptional precision (0.99) but diminished recall (0.77), indicating a potential
underestimating of urban sprawl. Cropland classification had strong performance
with a precision of 0.97 and a recall of 0.85, but bare ground demonstrated the weakest
performance metrics, with an F1 score of 0.85.

The land use maps from 1994, 2004, 2014, and 2024 indicate substantial
spatiotemporal alterations in land cover patterns throughout the study area (Figure 2,
Table 3). The most notable change transpired in the allocation of crops and barren
ground across the observation intervals. In 1994, the terrain was principally defined by
vast rangeland (13,775.53 km?), with crops localized in particular regions and limited
urban development mostly observed in the middle section of the study. By 2004, a
significant alteration in land cover composition was apparent, with bare terrain
expanding markedly from 694.99 km? to 2,115.25 km?—a more than threefold increase.
This growth coincided with a substantial decrease in farmland area from 2,119.80 km?
to merely 636.43 km?. The spatial pattern indicates a potential phase of land
deterioration or agricultural abandonment throughout this decade. The 2014 image
illustrates a significant reversal of this pattern, with farmland expanding to 3,169.61
km?, while bare terrain diminished to 302.44 km?2. Urban areas persisted in their
gradual growth, attaining 434.74 km?2. The spatial distribution reveals agricultural
intensification, especially in the northern and central regions of the research area. By
2024, the terrain stabilized with sustained agricultural preeminence. Cropland
expanded to 3,257.10 km?, marking the greatest extent recorded over all historical
periods. Developed regions demonstrated steady expansion, increasing to 628.27
km2—almost a five-fold rise since 1994. Significantly, bare ground diminished to its
minimal extent (58.98 km?), indicating effective land reclamation or vegetative
restoration.

Rangeland, while maintaining its status as the predominant land cover category
during the research period, underwent a progressive decrease from 13,775.53 km? in
1994 to 12,807.29 km? in 2024, indicating a 7% loss. This loss of around 968 km? seems
to have been predominantly transformed into agricultural land and developed regions.
Water bodies initially expanded from 257.29 km? in 1994 to 292.91 km? in 2004,
subsequently seeing a slow decline to 233.27 km? by 2024. The 9.4% reduction from
1994 levels may signify water stress or alterations in water management methods. Tree
cover demonstrated significant volatility, plummeting from 43.24 km? in 1994 to
merely 18 km? in 2004 (a 58% decrease), before partially rebounding to 38.29 km? by
2024. Although this indicates partial recovery, tree cover is still 11.5% lower than the
levels recorded in 1994. The most notable alteration pertained to the interaction
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between agriculture and barren terrain. The transient transformation of agricultural
land to unutilized terrain in 2004, succeeded by an increase in agricultural activities
beyond prior extents, indicates a significant alteration in land use policy or the
initiation of an agricultural development initiative post-2004. The near-elimination of
bare ground by 2024 (a 91.5% reduction from the 2004 high) and a 54% increase in crops
from 1994 levels exemplifies effective agricultural intensification and land
rehabilitation initiatives. Urban expansion exhibited the most steady growth trend,
with developed areas expanding by 374% over the 30-year period. The consistent
urbanization, expanding from 132.34 km? to 628.27 km? signifies demographic
pressures and economic advancement in the area.
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Figure 2. Land use maps of the study area for the years 1994-2024 based on

Random Forest supervised classification.

Table 2. Accuracy assessment of the classification process.

Water 1.00 0.84 0.91
Crops 0.97 0.85 0.91
Built Area 0.99 0.77 0.87
Bare Ground 0.96 0.76 0.85
Rangeland 0.90 1.00 0.95
Overall Accuracy | 0.93

Kappa 0.90

Table 3. Area of land use classes for the years 1994-2024.
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Area (km?)
Land use

1994 2004 2014 2024
Water 257.29 29291 274.59 233.27
Trees 43.24 18 23.15 38.29
Crops 2119.80 636.43 3169.61 3257.10
Built Area 132.34 387.06 434.74 628.27
Bare Ground | 694.99 2115.25 302.44 58.98
Rangeland 13775.53 | 13573.55 | 12818.66 | 12807.29

Results of Urban Growth Analysis

The investigation of urban growth patterns from 1994 to 2024 indicates significant
temporal and spatial variations in urbanization dynamics within the examined region.
The urban expansion exhibits a distinctive pattern of rapid growth phases succeeded
by periods of slower growth, as evidenced by the spatial distribution maps and
quantitative indicators presented in Table 4. In 1994, the initial urban footprint
encompassed 132.34 km?, or 0.78% of the whole study area (Figure 4). At this time, the
majority of urban communities were concentrated in the central valley region, with
development nodes dispersed throughout the landscape. The spatial arrangement
indicates that the city possesses a polycentric structure, characterized by limited
linkages among various residential clusters.

During the initial decade of analysis (1994-2004), the city had the most significant
transformation, with the urban area expanding to 387.06 km?, constituting 2.27% of the
entire area. During this period, the annual growth rate was an impressive 25.47%,
resulting in a total increase of 254.72 km? (Table 4). The geographical analysis indicates
that this growth primarily occurred via infill development within established urban
centers and the establishment of new settlement zones along transportation corridors
(Figure 3). The growth observed during this period indicates that cities transitioned
from isolated nodes to components of extensive networks.

The subsequent decade (2004-2014) saw a markedly distinct growth pattern. The
urban expanse expanded to 434.74 km? (2.55% of the total area), however the yearly
growth rate decreased to 4.77%. The total expansion throughout this period was 47.68
km?, representing the most sluggish growth phase in the study's timeframe (Table 4).
The spatial distribution pattern (Figure 3) indicates that existing urban areas are
expanding in size but not significantly extending outward, suggesting a period of
urban densification rather than extensive horizontal growth.

Over the past decade (2014-2024), there has been a resurgence in urban expansion,
with the urban area increasing to 628.27 km?, constituting 3.69% of the total area.
During this period, the area expanded by 19.35% year, totaling 193.53 km? (Table 4).
The spatial analysis indicates significant expansion at the peripheries, particularly in
the southern and eastern regions of the study area (Figure 3). The growth pattern
indicates both extensive development and corridor-based expansion, suggesting a
complex interplay between planned development and organic urban growth.

Figure 4 illustrates that urban expansion is not a linear process over time. The
urbanization curve indicates that the tendency is intensifying over the study period.
Between 1994 and 2024, the urban area expanded by over 375%, with the greatest
significant expansion occurring from 1994 to 2004. The overall trajectory indicates that
urban expansion has not adhered to a consistent linear progression. Instead, it has seen
periods of significant acceleration followed by relative stabilization, and in the past
decade, it has begun to ascend again at an accelerated pace.
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Figure 3. Maps of the urban areas in the study area for 1994, 2004, 2014, and 2024.
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Figure 4. Urban growth trend in the study area.
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Table 4. Urban Area Evolution (1994-2024).

Year Urban Percentage (%) Annual Growth Absolute Growth
Area (km?) Rate (%) (km?)

1994 132.34 0.78% /

2004 387.06 2.27% 25.47% 254.72

2014 434.74 2.55% 4.77% 47.68

2024 628.27 3.69% 19.35% 193.53

Results of Network Analysis

An analysis of the transportation network reveals that the history of road
infrastructure has mirrored the complex growth patterns of cities in the examined
region. Significant alterations have occurred in the network's structure over the
previous thirty years. Figure 5 illustrates the alterations in connection, density, and
spatial distribution patterns, whereas Table 5 quantifies these changes. In 1994, the
network's fundamental configuration comprised 17,589 nodes and 18,489 connecting
edges. The total length of the network was 27.703 kilometers. The network had an
average degree of 2.102 and a density of 0.000119, equivalent to a road density of 15.035
km per unit area. The spatial distribution indicates a concentrated network topology,
characterized by primary arterial routes converging towards the city center.
Conversely, outlying regions exhibit less connectivity (Figure 5). The network analysis
indicates that the transportation infrastructure was initially incomplete, signifying the
existence of isolated road segments and certain areas without connectivity altogether.
During the initial decade of analysis (1994-2004), the network experienced gradual
growth. The quantity of nodes increased to 17,941, and the quantity of edges rose to
18,991, resulting in a total length of 29.131 km. The average degree remained relatively
constant at 2.117, while the network density exhibited minimal variation at 0.000118.
The density of roads per square kilometer increased somewhat to 15.266. The physical
arrangement (Figure 5) indicates that network connectivity has enhanced over time,
particularly in the central metropolitan districts. Nonetheless, the overall network
architecture remains fragmented, and connectivity gaps persist. The network
continued to exhibit indications of disconnection, signifying that complete integration
had not yet been achieved. Between 2004 and 2014, the network experienced modest
growth. The quantity of nodes increased to 18,028, while the quantity of edges rose to
19,077, resulting in a total network length of 32.256 km. The mean degree remained
constant at 2.116, however the network density experienced a little decline to 0.000117.
The density of roads per unit area increased to 15.334 km, indicating an improvement
in transportation infrastructure over time. The spatial analysis (Figure 5) indicates that
previously poorly connected regions are now more interconnected due to the
establishment of secondary road networks linking small towns and villages to primary
transportation corridors. Despite these modifications, the network remained
unconnected, indicating that structural fragmentation persisted during this period.

The past decade (2014-2024) seen the most significant transformations in the
network. The quantity of nodes increased from 21,324 to 22,734, whilst the quantity of
edges expanded from 22,734 to 38,789 kilometers. This period exhibited the highest
average degree (2.132) and a significant increase in network density (0.000231), which
was double that of the preceding decade's value. The road density attained 17.231 km
per unit area, indicating substantial infrastructural development. The spatial
distribution (Figure 5) indicates that the network has become denser and now
encompasses areas that were previously isolated from it. The network exhibits
enhanced connectivity, featuring more redundancy in pathways, improved
accessibility to peripheral regions, and superior integration among urban centers. The
network study indicates that complete connectivity has not been achieved, signifying
those certain isolated regions or remote areas still lack direct access to the primary
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transportation network. The alterations in network properties over time exhibit a non-
linear growth pattern, with the most significant changes occurring between 2014 and
2024. The significant increase in network density over the past decade indicates a
transition from basic connectivity to comprehensive network integration. This results
from intentional investments in infrastructure to facilitate the swift expansion of urban
areas. The persistent disconnection of the network over all study periods indicates the
presence of geographical obstacles, planned development phases, or infrastructural
limits that have hindered complete network integration, despite overall improvements
in connectivity and accessibility (Table 5).

Table 5. Metrics of the road network for all study years.

# # Total Average Network Road Is
Year Length ) )
Nodes | Edges (km) Degree Density Density | connected
1994 | 17589 | 18489 27.703 2.102 0.000119 15.035 False
2004 | 17941 | 18991 29.131 2.117 0.000118 15.266 False
2014 | 18028 | 19077 32.256 2.116 0.000117 15.334 False
2024 | 21324 | 22734 38.789 2.132 0.000231 17.231 False

) "” 3 0K Kijomeen
————

Figure 5. Maps of the road networks of Al-Sulaymaniyah city for 1994, 2004, 2014,
and 2024.
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Results of Co-evolution of Urban Growth and Network Analysis

The co-evolutionary analysis of urban expansion and transportation network
development reveals their mutual dependence and the potential for divergent growth
patterns throughout the research period. The statistical modeling of these connections
elucidates the interplay between infrastructure and urban expansion throughout time,
as well as the impact of these interactions on urban growth. The urban-network
relationship model exhibits a moderate level of explanatory power, indicated by a R?
value of 0.49. Nearly fifty percent of the alterations in network development can be
attributed to urban growth trends (Table 6). The negative coefficient of -0.044 and the
intercept of 40.61 indicate an unfavorable relationship between urban expansion and
certain network characteristics. This may be due to fast urban expansion rendering
network density metrics less precise. This seemingly illogical link may indicate that
urban expansion has beyond the proportional enhancement of infrastructure, resulting
in diminished efficiency of networks per unit of metropolitan area during periods of
rapid growth. The distinct trend analyses indicate that the trajectories of urban and
network expansion diverge significantly. The urban trend model exhibits substantial
predictive capability, evidenced by a R? of 0.87, a positive coefficient of 16.105, and an
intercept of -31,910.91. The robust correlation indicates that urban expansion adheres
to a highly predictable trajectory across time, characterized by consistent growth rates
that can be effectively analyzed using linear regression. The network trend model
accounts for a limited portion of the data, exhibiting a R? of 0.58, a negative coefficient
of -0.829, and an intercept of 1,688.21. The negative slope indicates a deterioration of
certain network properties over time. This may be due to the challenges of maintaining
network density and connection requirements amid rapid urban expansion.

The causality study provides critical insights into the directional relationship
between urban expansion and network development. The Granger causality test yields
a p-value of 0.5, indicating a lack of statistically significant evidence that urban growth
influences road expansion at conventional significance levels (Table 6). This study
contradicts the prevailing notion that urban growth necessitates the construction of
infrastructure. It indicates that network development may occur independently during
its own planning cycles or in reaction to external factors. The correlation coefficient of
-0.483 substantiates the negative relationship identified in the regression analysis,
indicating that as urban areas expand, network performance metrics decline.
The correlation investigation indicates intricate relationships between metropolitan
regions and other network characteristics (Table 7). The Pearson correlation between
metropolitan area and road length indicates a robust positive relationship (r = 0.701, p
<0.001), signifying that as cities expand, their road networks often increase in size. The
Spearman correlation is considerably lower (r = 0.399, p = 0.6), indicating that this
relationship may not be linear and could be influenced by outliers or non-linear
patterns. The link between metropolitan area and network density exhibits analogous
characteristics. It has a robust Pearson correlation (r = 0.723, p < 0.001) but a non-
significant Spearman correlation (r = 0.799, p = 0.2). This indicates the potential
existence of non-linear relationships or threshold effects in the dynamics of urban-
network density. The correlation between urban area and road density is identical to
that between road length and road density, exhibiting equivalent correlation
coefficients (Pearson: r =0.701, p < 0.001; Spearman: r = 0.399, p = 0.6). This consistency
indicates that total road length and road density respond similarly to the stresses of
urban expansion. The analysis of the growth rate correlation reveals a slight positive
Pearson correlation (r = 0.34, p < 0.001) and a non-significant Spearman correlation (r =
0.5, p = 0.66). This indicates that correlations between growth rates are not robust and
may fluctuate over time or exhibit threshold effects. The co-evolutionary approach
demonstrates that urban expansion and network development occur inside a complex
adaptive system, wherein certain events transpire simultaneously while others do not.
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The significant correlations in absolute terms between metropolitan areas and road
length and density indicate that infrastructure development typically aligns with the
demands of expanding cities. Nonetheless, the inverse relationships seen in the
regression models and the absence of clear causality suggest that this response may be
insufficient or misaligned temporally. The findings indicate that urban expansion may
be outpacing infrastructure development, potentially resulting in diminished network
performance metrics despite an increase in road quantity. This is a prevalent trend in
developing metropolitan systems, since swift growth hampers infrastructure systems'
ability to maintain service quality and connectivity standards.

Table 6. Results of co-evolution model between urban growth and road networks.

Co-evolution Model R2 | Coefficient/slope | Intercept
Urban-Network Relationship 0.49 -0.044 40.61
Urban Trend 0.87 16.105 -31910.91
Network Trend 0.58 -0.829 1688.21
Causality
P-value 0.5
Correlation -0.483
Urban growth causes road expansion False

Table 7. Results of correlations between urban growth and different road
network characteristics.
Correlation Type Pearson Spearman
Urban Area vs Road Length 0.701 (pvalue=0) | 0.399 (pvalue=0.6)
Urban Area vs Network Density | 0.723 (pvalue=0) | 0.799 (pvalue=0.2)
Urban Area vs Road Density | 0.701 (pvalue=0) | 0.399 (pvalue=0.6)
Growth Rate 0.34 (pvalue=0) | 0.5 (pvalue=0.66)

4. Conclusion

This study uses a combination of Random Forest classification and network
analysis to give a full picture of the complicated relationship between urban expansion
and transportation infrastructure in Al-Sulaymaniyah City. The Random Forest
classifier worked very well, with an overall accuracy of 93%. This shows that it is a
good tool for mapping land cover in urban areas with a lot of different types of land,
even when data is hard to come by in cities that are growing quickly. The quantitative
analysis shows that Al-Sulaymaniyah underwent an unprecedented urban
transformation over the course of three decades, with built areas growing by 375% and
showing non-linear growth patterns that included periods of rapid expansion (1994—
2004 and 2014-2024) and periods of consolidation (2004-2014). The development of
the transportation network at the same time, while significant in absolute terms, did
not keep up with the proportionate increase needed by cities. The difference is shown
by the negative connection coefficients in co-evolutionary models and the fact that
there is no statistically meaningful link between urban expansion and infrastructure
provision. The correlation study shows that there is a big gap between the procedures
of planning for urban growth and planning for infrastructure. There are large positive
correlations between metropolitan areas and absolute network metrics, but there is no
Granger causality. This means that transportation infrastructure expansion happens
on its own planning cycles instead than in response to urban needs. This trend
suggests that there may be problems with governance when cities grow faster than
their infrastructure can handle, which raises questions about the long-term
sustainability of urban development.

The methods used in this study can be used in other cities besides Al-
Sulaymaniyah to explore how cities evolve together. Combining machine learning-
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based classification with graph-theoretic network analysis could be very useful for
evidence-based urban planning in places where there isn't a lot of data. The results
stress how important it is to build infrastructure ahead of time so that it can handle the
challenges of urban growth instead of just reacting to them. Future urban planning
should focus on coordinated development methods that make sure infrastructure is
built in line with the way cities are growing. The study shows that sustainable urban
development needs governance systems that can coordinate land use planning with
the building of transportation infrastructure. These ideas are especially important for
cities in developing areas that are growing quickly, where comparable problems with
co-evolution could hurt long-term sustainability and livability.
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