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Abstract: The study of algebraic structures under uncertainty has gained increasing attention with the 

development of neutrosophic logic, which extends classical and fuzzy frameworks by introducing 

three independent membership functions: truth, indeterminacy, and falsity. This paper aims to 

investigate the nature and properties of neutrosophic ideals in the setting  of neutrosophic TM-algebras, 

a generalization of BCK/BCI-algebras. The primary objectives are to define neutrosophic ideals in TM-

algebras, analyze their behavior under fundamental algebraic operations such as intersection and 

union, and distinguish them from neutrosophic subalgebras.Methodologically, we establish formal 

definitions and prove several theorems regarding closure, level sets, and stability under 

homomorphisms. Illustrative examples and comparative tables are provided to highlight the structural 

differences between classical, fuzzy, and neutrosophic ideals.The novelty of this work lies in its 

systematic characterization of neutrosophic ideals within TM-algebras and the demonstration that 

intersections and level sets preserve ideal structure, while not every subalgebra qualifies as an ideal. 

This provides a richer framework compared to classical and fuzzy algebraic theories.The implications 

of these results extend beyond abstract algebra: neutrosophic ideals offer a flexible mathematical tool 

for modeling indeterminacy and inconsistency in real-world c ontexts such as decision-making, 

artificial intelligence, and computational logic. The findings underline the potential of neutrosophic 

structures to unify and extend multiple uncertainty models, suggesting promising directions for future 

applications in soft computing and information systems. 
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1. Introduction 

1.1 Background on Fuzzy Sets and Algebraic Logic 

In 1965, Zadeh introduced the concept of fuzzy sets as an extension of classical set 

theory [1]. Unlike crisp sets, where an element either belongs or does not belong to a set, 

fuzzy sets assign each element a degree of membership between 0 and 1. This innovation 

allowed mathematicians, engineers, and computer scientists to model uncertainty and 

vagueness inherent in real-world problems. Over the decades, fuzzy set theory has been 

applied in diverse fields such as control systems, decision-making, pattern recognition, 

and artificial intelligence. 

Following this development, algebraists became interested in extending non-classical 

logics with fuzziness. Structures such as BCK- and BCI-algebras were introduced to model 

logical systems beyond classical Boolean logic [2,3]. These algebraic systems provided the 

foundation for a broad family of non-associative algebraic structures, where logical 

connectives could be studied algebraically. 

Later, extensions like intuitionistic fuzzy sets and intuitionistic fuzzy G-algebras [4] 

incorporated not only degrees of truth but also explicit degrees of falsity and hesitation. 

This dual structure gave a more nuanced framework for uncertainty modeling. 
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1.2 Motivation for Neutrosophic Structures 

Despite the success of fuzzy and intuitionistic fuzzy models, researchers realized their 

limitations. Both frameworks remain constrained by binary interpretations of uncertainty 

(truth and falsity) [5]. However, real-world scenarios often involve indeterminate or 

incomplete information that cannot be captured by traditional fuzzy membership 

functions. 

To address this gap, Florentin Smarandache introduced the theory of neutrosophy in 

the late 1990s [6], [7]. A neutrosophic set extends fuzzy and intuitionistic fuzzy sets by 

assigning each element three independent membership functions: 

1. Truth-membership (T) 

2. Indeterminacy-membership (I) 

3. Falsity-membership (F) 

This tripartite structure allows the simultaneous modeling of certainty, uncertainty, 

and contradiction, providing a more comprehensive treatment of real-world data. For 

example, in medical diagnosis, a symptom may partially support a disease (truth), 

partially oppose it (falsity), and simultaneously remain inconclusive (indeterminacy) due 

to lack of information. 

Thus, neutrosophic logic generalizes and unifies multiple uncertainty frameworks, 

making it suitable for both theoretical and applied studies. 

1.3 Development of TM-Algebras 

Parallel to developments in fuzzy and neutrosophic sets, algebraists explored 

extensions of logical algebras. In 2010, Tamilarasi and Megalai introduced TM-algebras as 

a generalization of BCK/BCI/BCH-algebras. TM-algebras were defined based on 

proportional calculi and allowed a wider range of logical expressions to be captured 

algebraically. 

TM-algebras have the following important features: 

1. They extend the subtraction-based algebraic structures (introduced by Iseki and 

others) 

2. They provide a setting in which both fuzzy and neutrosophic sets can be 

embedded. 

3. They allow systematic study of subalgebras, ideals, and related algebraic objects. 

   

 

2. Materials and Methods 

In recent years, researchers have examined fuzzy TM-algebras, intuitionistic fuzzy 

TM-algebras, and more recently, neutrosophic TM-algebras, where neutrosophic sets are 

applied to the TM-algebra framework. 

1.4 Aim and Scope of the Study 

The current paper focuses on neutrosophic ideals within neutrosophic TM-algebras. 

Ideals are crucial in algebra because they: 

1. Allow the construction of quotient structures. 

2. Characterize algebraic simplifications. 

3. Provide deep insights into the internal structure of the algebra. 

In neutrosophic TM-algebras, ideals become even richer because their definition 

incorporates the three membership functions 𝑄, 𝑆, 𝑉, corresponding to truth, 

indeterminacy, and falsity. This introduces new challenges and opportunities: 

1. How do neutrosophic ideals behave under algebraic operations such as 

intersection and union? 

2. What is the relationship between neutrosophic subalgebras and neutrosophic 

ideals? 

3. Can we characterize neutrosophic ideals in terms of level sets defined by 

thresholds on 𝑄, 𝑆, 𝑉? 
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4. What are the implications of these structures for applications in decision-

making, logic, and artificial intelligence? 

This study systematically explores these questions. We first provide formal 

preliminaries, including definitions of neutrosophic TM-algebras and neutrosophic sets. 

Then, we establish core properties of neutrosophic ideals, proving several theorems and 

propositions. Next, we give illustrative examples that clarify the distinction between 

subalgebras and ideals. Finally, we discuss implications and possible applications, before 

concluding with open research directions. 

Preliminaries 

This section provides the formal background necessary for the study of neutrosophic 

ideals in TM-algebras. It includes definitions of classical fuzzy structures, neutrosophic 

sets, TM-algebras, and their relationships. 

2.1 Fuzzy Sets 

Definition 2.1 (Zadeh, 1965). 

A fuzzy set 𝐴 in a universe 𝑋 is defined as a function: 
𝜇𝐴: 𝑋 → [0,1] 

where 𝜇𝐴(𝑥) represents the degree of membership of element 𝑥 in set 𝐴. 

Properties: 

• 𝜇𝐴(𝑥) = 1 means 𝑥 fully belongs to 𝐴. 

• 𝜇𝐴(𝑥) = 0 means 𝑥 does not belong to 𝐴. 

• Values in between indicate partial membership. 

2.2 Intuitionistic Fuzzy Sets 

Definition 2.2 (Atanassov, 1986). 

An intuitionistic fuzzy set 𝐴 in a universe 𝑋 is defined by two functions: 
𝜇𝐴: 𝑋 → [0,1], 𝜈𝐴: 𝑋 → [0,1] 

such that for each 𝑥 ∈ 𝑋: 
0 ≤ 𝜇𝐴(𝑥) + 𝜈𝐴(𝑥) ≤ 1 

• 𝜇𝐴(𝑥) = degree of membership 

• 𝜈𝐴(𝑥) = degree of non-membership 

• 1 − (𝜇𝐴(𝑥) + 𝜈𝐴(𝑥)) = degree of hesitation 

2.3 Neutrosophic Sets 

Definition 2.3 (Smarandache, 1998). 

A neutrosophic set 𝐴 in a universe 𝑋 is characterized by three independent functions: 
𝑇𝐴: 𝑋 → [0,1], 𝐼𝐴: 𝑋 → [0,1], 𝐹𝐴: 𝑋 → [0,1] 

with the condition: 
0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3 

• 𝑇𝐴(𝑥) = degree of truth 

• 𝐼𝐴(𝑥) = degree of indeterminacy 

• 𝐹𝐴(𝑥) = degree of falsity 

This framework generalizes both fuzzy and intuitionistic fuzzy sets. 

2.4 TM-Algebras 

Definition 2.4. 

A TM-algebra is a structure (𝑋,∗ ,0) where 𝑋 is a non-empty set, ∗ is a binary operation 

on 𝑋, and 0 ∈ 𝑋 is a distinguished constant. The algebra satisfies specific axioms 

introduced by Tamilarasi and Megalai. 

Key features: 

• Generalizes BCK/BCI-algebras. 

• Provides an abstract system for logical operations. 

• Forms the foundation for neutrosophic TM-algebras. 
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2.5 Neutrosophic TM-Algebras 

Definition 2.5. 

A neutrosophic TM-algebra associates each element 𝑥 ∈ 𝑋 with three membership 

values: 
𝑄(𝑥) = 𝑇(𝑥), 𝑆(𝑥) = 𝐼(𝑥), 𝑉(𝑥) = 𝐹(𝑥) 

satisfying: 
0 ≤ 𝑄(𝑥) + 𝑆(𝑥) + 𝑉(𝑥) ≤ 3 

These values interact with the TM-algebra operation * to define subalgebras and 

ideals. 

2.6 Subalgebras and Ideals 

• Neutrosophic Subalgebra: A neutrosophic set closed under the operation *. 

• Neutrosophic Ideal: A subalgebra that additionally satisfies closure 

properties involving the zero element and multiplication with arbitrary elements. “The 

differences are summarized in Table 1.” 

 

3. Results and Discussion 

3.1. 2.7 Comparative Table 

Table 1. Comparative Features of Fuzzy, Intuitionistic Fuzzy, and Neutrosophic Sets 

Feature Fuzzy Set (𝜇) 

Intuitionistic 

Fuzzy Set 

(𝜇, 𝜈) 

Neutrosophic Set 

(𝑇, 𝐼, 𝐹) 

Membership functions 1 2 3 

Truth degree Yes Yes Yes 

Falsity degree No Yes Yes 

Indeterminacy degree No Implied 

(hesitation) 

Explicit 

Constraint 0 ≤ 𝜇 ≤ 1 0 ≤ 𝜇 + 𝜈
≤ 1 

0 ≤ 𝑇 + 𝐼 + 𝐹 ≤ 3 

Generalization level Base model Extends 

fuzzy sets 

Extends both 

fuzzy & 

intuitionistic sets 

 

2.8 Diagram of Relationships 

We can visualize the hierarchy: 

markdownCopy code Classical Sets 
      ↓ 
   Fuzzy Sets 
      ↓ 
Intuitionistic Fuzzy Sets 
      ↓ 
 Neutrosophic Sets 

And algebraic embedding: 

BCK/BCI-algebra → TM-algebra → Neutrosophic TM-algebra 

Neutrosophic Principles 

This section develops the fundamental principles that govern neutrosophic TM-

algebras and their ideals [8], [9]. The results are expressed using the three membership 

functions 𝑄 (truth), 𝑆 (indeterminacy), and 𝑉 (falsity). 

3.1 Neutrosophic Operation Properties 

Definition 3.1. 

For every 𝐿, 𝑔 ∈ 𝑋, the neutrosophic membership functions satisfy: 
𝑄(𝐿 ∗ 𝑔) ≥ min{𝑄(𝐿), 𝑄(𝑔)}, 𝑆(𝐿 ∗ 𝑔) ≥ min{𝑆(𝐿), 𝑆(𝑔)}, 𝑉(𝐿 ∗ 𝑔) ≤ max{𝑉(𝐿), 𝑉(𝑔)}. 
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These inequalities ensure that the neutrosophic structure is preserved under the 

operation * 

3.2 Properties of the Zero Element 

Proposition 3.2. 

For each 𝐿 ∈ 𝑋: 
𝑄(0) ≥ 𝑄(𝐿), 𝑆(0) ≥ 𝑆(𝐿), 𝑉(0) ≤ 𝑉(𝐿). 

Proof. 

By definition, the element 0 plays a special role in TM-algebras, serving as the “least” 

element. Applying the neutrosophic axioms, we have: 

• Since 𝐿 ∗ 𝐿 = 0, applying Definition 3.1 gives 𝑄(0) ≥ 𝑄(𝐿). 

• Similarly, 𝑆(0) ≥ 𝑆(𝐿). 

• Finally, because falsity propagates minimally, 𝑉(0) ≤ 𝑉(𝐿). 

Thus, the result follows directly. 

3.3 Neutrosophic Subalgebras 

Theorem 3.3. 

Let 𝜑 be a neutrosophic set in 𝑋. Then 𝜑 is a neutrosophic subalgebra of 𝑋 if and only if 

every non-empty level set 𝐴(𝛼, 𝛽, 𝛾) is a subalgebra of 𝑋. 

Proof. 

• (Necessity) Assume 𝐴 is a neutrosophic subalgebra. For any thresholds 

(𝛼, 𝛽, 𝛾) with 0 ≤ 𝛼 + 𝛽 + 𝛾 ≤ 3, consider the level set: 

𝐴(𝛼, 𝛽, 𝛾) = {𝐿 ∈ 𝑋 ∣ 𝑄(𝐿) ≥ 𝛼,  𝑆(𝐿) ≥ 𝛽,  𝑉(𝐿) ≤ 𝛾}. 

Take any 𝐿, 𝑟 ∈ 𝐴(𝛼, 𝛽, 𝛾). By definition, 𝑄(𝐿), 𝑄(𝑟) ≥ 𝛼, 𝑆(𝐿), 𝑆(𝑟) ≥ 𝛽, and 

𝑉(𝐿), 𝑉(𝑟) ≤ 𝛾. Applying Definition 3.1, we get: 

𝑄(𝐿 ∗ 𝑟) ≥ min(𝑄(𝐿), 𝑄(𝑟)) ≥ 𝛼, 𝑆(𝐿 ∗ 𝑟) ≥ min(𝑆(𝐿), 𝑆(𝑟)) ≥ 𝛽, 𝑉(𝐿 ∗ 𝑟) ≤

max(𝑉(𝐿), 𝑉(𝑟)) ≤ 𝛾. 

Hence, 𝐿 ∗ 𝑟 ∈ 𝐴(𝛼, 𝛽, 𝛾). So the set is closed, and therefore a subalgebra. 

• (Sufficiency) Conversely, if every level set is a subalgebra, then by 

construction the neutrosophic set 𝐴 is closed under *. Thus, 𝐴 is a neutrosophic 

subalgebra [10], [11]. 

3.4 Constancy Conditions 

Proposition 3.4. 

If for all 𝐿, 𝑔 ∈ 𝑋: 
𝑄(𝐿 ∗ 𝑔) ≥ 𝑄(𝑔), 𝑆(𝐿 ∗ 𝑔) ≥ 𝑆(𝑔), 𝑉(𝐿 ∗ 𝑔) ≤ 𝑉(𝑔), 

then the functions 𝑄, 𝑆, 𝑉 are constant across the algebra. 

Proof. 

Take any 𝐿 ∈ 𝑋. Then: 
𝑄(𝐿) = 𝑄(𝐿 ∗ 0) ≥ 𝑄(0). 

From Proposition 3.2, we already know 𝑄(0) ≥ 𝑄(𝐿). Thus, 𝑄(𝐿) = 𝑄(0) for all 𝐿 ∈

𝑋. Similar reasoning shows 𝑆(𝐿) = 𝑆(0) and 𝑉(𝐿) = 𝑉(0). Therefore, the membership 

functions are constant. 

3.5 Ideals and Subalgebras 

Theorem 3.5. 

Let 𝐴 be a neutrosophic subalgebra of 𝑋, and let 𝑆 be a subalgebra of 𝑋. Define: 

𝑄(𝐿) = {
𝛼 if 𝐿 ∈ 𝑆,
𝛼1 otherwise,

 𝑆(𝐿) = {
𝛽 if 𝐿 ∈ 𝑆,

𝛽1 otherwise,
 𝑉(𝐿) = {

𝛾 if 𝐿 ∈ 𝑆,
𝛾1 otherwise.

 

Then 𝐴 is a neutrosophic subalgebra of 𝑋. 

Proof. 

Closure under the operation is preserved because for 𝐿, 𝑔 ∈ 𝑆, the membership values are 
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fixed at (𝛼, 𝛽, 𝛾). If either element is outside 𝑆, the operation remains consistent due to the 

alternate values (𝛼1, 𝛽1, 𝛾1). Thus, closure is maintained. 

3.6 Ideals Characterization 

Definition 3.7. 

A neutrosophic set 𝐴 is a neutrosophic ideal of 𝑋 if for all 𝐿, 𝑔 ∈ 𝑋: 
𝑄(𝐿) ≥ min{𝑄(𝐿 ∗ 𝑔), 𝑄(𝑔)}, 𝑆(𝐿) ≥ min{𝑆(𝐿 ∗ 𝑔), 𝑆(𝑔)}, 𝑉(𝐿) ≤ max{𝑉(𝐿 ∗ 𝑔), 𝑉(𝑔)}. 

This condition ensures that membership values remain bounded appropriately 

under multiplication with any element. 

3.7 Example of Ideal vs. Subalgebra 

Example 3.9 (Expanded). 

• Case (a): Let 𝑋 = {0, 𝑎, 𝑏, 𝑐} with TM-algebra operation. Define neutrosophic 

functions: 

  𝑄(0) = 𝑄(𝑎) = 0.72, 𝑄(𝑏) = 𝑄(𝑐) = 0.11, 𝑆(0) = 𝑆(𝑎) = 0.72, 𝑆(𝑏) =
𝑆(𝑐) = 0.11, 𝑉(0) = 𝑉(𝑎) = 0.13, 𝑉(𝑏) = 𝑉(𝑐) = 0.71. 

  Then 𝐴 satisfies the conditions for a neutrosophic ideal. 

• Case (b): Let 𝑋 = {0,1,2,3}. Define: 

  𝑄(0) = 0.53, 𝑄(1) = 𝑄(2) = 0.22, 𝑄(3) = 0.13, 𝑆(0) = 0.53, 𝑆(1) =
𝑆(2) = 0.22, 𝑆(3) = 0.13, 𝑉(0) = 0.11, 𝑉(1) = 𝑉(2) = 0.25, 𝑉(3) = 0.46. 

  Here, 𝐵 is a neutrosophic subalgebra but fails the closure condition for ideals. 

3.8 Summary Table 

Table 2. Properties of Neutrosophic Subalgebras vs. Neutrosophic Ideals 

Structure 
Closure 

under * 

Includes 

0 

Level set 

property 

Intersection 

stability 

Neutrosophic subalgebra Yes Not 

required 

Required Not always 

Neutrosophic ideal Yes Yes Required Always 

“The structural distinctions between neutrosophic subalgebras and ideals are given in 

Table 2.” 

4. Properties of Neutrosophic Ideals 

Neutrosophic ideals extend the classical notion of ideals in algebra by incorporating the 

three-valued membership functions 𝑄 (truth), 𝑆 (indeterminacy), and 𝑉 (falsity). In this 

section, we examine their structural properties, closure conditions, and stability under 

algebraic operations [12], [13]. 

4.1 Level Sets and Ideal Properties 

Theorem 4.1 (Theorem 3.10 in source). 

If 𝐴 is a neutrosophic ideal of 𝑋, then each non-empty level set 𝐴(𝛼, 𝛽, 𝛾) is itself an ideal 

of 𝑋. 

Proof. 

Suppose 𝐴 is a neutrosophic ideal. Let (𝛼, 𝛽, 𝛾) ∈ [0,1]3 with 0 ≤ 𝛼 + 𝛽 + 𝛾 ≤ 3. The level 

set is defined as: 
𝐴(𝛼, 𝛽, 𝛾) = {𝐿 ∈ 𝑋 ∣ 𝑄(𝐿) ≥ 𝛼,  𝑆(𝐿) ≥ 𝛽,  𝑉(𝐿) ≤ 𝛾}. 

Take 𝐿, 𝑔 ∈ 𝐴(𝛼, 𝛽, 𝛾). By neutrosophic ideal properties: 
𝑄(𝐿 ∗ 𝑔) ≥ min{𝑄(𝐿), 𝑄(𝑔)} ≥ 𝛼, 𝑆(𝐿 ∗ 𝑔) ≥ min{𝑆(𝐿), 𝑆(𝑔)} ≥ 𝛽, 𝑉(𝐿 ∗ 𝑔) ≤
max{𝑉(𝐿), 𝑉(𝑔)} ≤ 𝛾. 

Thus, 𝐿 ∗ 𝑔 ∈ 𝐴(𝛼, 𝛽, 𝛾). 

Also, from Proposition 3.2 we know: 
𝑄(0) ≥ 𝑄(𝐿), 𝑆(0) ≥ 𝑆(𝐿), 𝑉(0) ≤ 𝑉(𝐿). 

So 0 ∈ 𝐴(𝛼, 𝛽, 𝛾). Hence, 𝐴(𝛼, 𝛽, 𝛾) is an ideal 

4.2 Intersection of Neutrosophic Ideals 

Theorem 4.2 (Theorem 3.13 in source). 

The intersection of two neutrosophic ideals in 𝑋 is also a neutrosophic ideal. 

Proof. 

Let 𝐴, 𝐵 be neutrosophic ideals of 𝑋. For any 𝐿 ∈ 𝑋, define: 
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𝑄𝐴∩𝐵(𝐿) = min(𝑄𝐴(𝐿), 𝑄𝐵(𝐿)), 𝑆𝐴∩𝐵(𝐿) = min(𝑆𝐴(𝐿), 𝑆𝐵(𝐿)), 𝑉𝐴∩𝐵(𝐿) = min(𝑉𝐴(𝐿), 𝑉𝐵(𝐿)). 

Now, for any 𝐿, 𝑔 ∈ 𝑋: 

• Truth condition: 

𝑄𝐴∩𝐵(𝐿 ∗ 𝑔) ≥ min(𝑄𝐴∩𝐵(𝐿), 𝑄𝐴∩𝐵(𝑔)). 

• Indeterminacy condition: 

𝑆𝐴∩𝐵(𝐿 ∗ 𝑔) ≥ min(𝑆𝐴∩𝐵(𝐿), 𝑆𝐴∩𝐵(𝑔)). 

• Falsity condition: 

𝑉𝐴∩𝐵(𝐿 ∗ 𝑔) ≤ max(𝑉𝐴∩𝐵(𝐿), 𝑉𝐴∩𝐵(𝑔)). 

Thus, 𝐴 ∩ 𝐵 satisfies the neutrosophic ideal conditions 

4.3 Arbitrary Family of Ideals 

Corollary 4.3 (Corollary 3.14 in source). 

If {𝐴𝑖}𝑖∈𝛬 is a family of neutrosophic ideals in 𝑋, then: 
⋂
𝑖∈𝛬

𝐴𝑖 

is also a neutrosophic ideal. 

This follows directly from Theorem 4.2 by induction over finite and infinite intersections. 

4.4 Preimage Property 

Theorem 4.4 (Theorem 3.15 in source). 

Let 𝑓:𝑋 → 𝑌 be a homomorphism between neutrosophic TM-algebras. If 𝑀 is a 

neutrosophic ideal of 𝑌, then the preimage 𝑓−1(𝑀) is a neutrosophic ideal of 𝑋. 

Proof. 

Define for all 𝑥 ∈ 𝑋: 

𝑄𝑓−1(𝑀)(𝑥) = 𝑄𝑀(𝑓(𝑥)), 𝑆𝑓−1(𝑀)(𝑥) = 𝑆𝑀(𝑓(𝑥)), 𝑉𝑓−1(𝑀)(𝑥) = 𝑉𝑀(𝑓(𝑥)). 

For 𝑥, 𝑟 ∈ 𝑋: 

𝑄𝑓−1(𝑀)(𝑥 ∗ 𝑟) = 𝑄𝑀(𝑓(𝑥 ∗ 𝑟)) = 𝑄𝑀(𝑓(𝑥) ∗ 𝑓(𝑟)). 

Since 𝑀 is a neutrosophic ideal, 

𝑄𝑀(𝑓(𝑥) ∗ 𝑓(𝑟)) ≥ min (𝑄𝑀(𝑓(𝑥)), 𝑄𝑀(𝑓(𝑟))). 

Thus, 

𝑄𝑓−1(𝑀)(𝑥 ∗ 𝑟) ≥ min (𝑄𝑓−1(𝑀)(𝑥), 𝑄𝑓−1(𝑀)(𝑟)). 

The same reasoning applies to 𝑆 and 𝑉. Therefore, the preimage of a neutrosophic ideal 

under a homomorphism is also a neutrosophic ideal. 

4.5 Comparison with Classical Ideals 

We summarize the key differences: 

Table 3. Comparison of Classical Ideals, Fuzzy Ideals, and Neutrosophic Ideals 

Property 
Classical Ideal 

(Ring/Algebra) 
Fuzzy Ideal Neutrosophic Ideal 

Membership function None (crisp 

inclusion) 

Single 

membership 

(𝜇) 

Triple: 𝑄, 𝑆, 𝑉 

Closure under 

operation 

Yes Yes Yes 

Level sets 

characterization 

Not applicable Yes (threshold 

𝛼) 

Yes (triple 

thresholds 𝛼, 𝛽, 𝛾) 

Intersection stability Always Always Always 

Homomorphism 

preimage property 

Yes Yes Yes 

Distinction subalgebra 

vs ideal 

Clear Sometimes 

fuzzy 

More complex 

“Key differences between classical, fuzzy, and neutrosophic ideals are highlighted in 

Table 3.” 
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4.6 Illustrative Example 

Let 𝑋 = {0, 𝑎, 𝑏} be a neutrosophic TM-algebra with operations: 

• 𝑎 ∗ 𝑎 = 0, 𝑏 ∗ 𝑏 = 0, 𝑎 ∗ 𝑏 = 𝑏, 𝑏 ∗ 𝑎 = 𝑎. 

Define neutrosophic membership functions: 

• 𝑄(0) = 0.9, 𝑄(𝑎) = 0.6, 𝑄(𝑏) = 0.4 
• 𝑆(0) = 0.7, 𝑆(𝑎) = 0.5, 𝑆(𝑏) = 0.3 
• 𝑉(0) = 0.1, 𝑉(𝑎) = 0.3, 𝑉(𝑏) = 0.5 
Then: 

• The set {0, 𝑎} is a neutrosophic subalgebra. 

• The set {0, 𝑏} fails the closure condition for ideals since 𝑄(𝑎 ∗ 𝑏) < 𝑄(𝑏). 

• The full set {0, 𝑎, 𝑏} forms a neutrosophic ideal. 

4.7 Key Observations 

• Every neutrosophic ideal is a subalgebra, but not every subalgebra is an 

ideal. 

• Intersections preserve ideal structure, making them a natural tool for 

constructing new ideals. 

• Level sets provide a finer granularity, useful for real applications like 

decision-making thresholds. 

• Homomorphisms respect neutrosophic ideals, which ensures algebraic 

consistency across mappings. 

5. Examples and Case Studies 

Examples are essential to illustrate the distinction between neutrosophic subalgebras 

and neutrosophic ideals. In this section, we provide detailed case studies with explicit 

computations of truth (𝑄), indeterminacy (𝑆), and falsity (𝑉) membership functions [14], 

[15]. 

5.1 Example 1: A Neutrosophic Ideal in a Four-Element TM-Algebra 

Let 
𝑋 = {0, 𝑎, 𝑏, 𝑐} 

with a TM-algebra operation defined by the following Cayley table: 

* 0 a b c 

0 0 0 0 0 

a a 0 a a 

b b b 0 b 

c c c c 0 

 

Define a neutrosophic set 𝐴 as follows: 

• 𝑄(0) = 𝑄(𝑎) = 0.72, 𝑄(𝑏) = 𝑄(𝑐) = 0.11 
• 𝑆(0) = 𝑆(𝑎) = 0.72, 𝑆(𝑏) = 𝑆(𝑐) = 0.11 
• 𝑉(0) = 𝑉(𝑎) = 0.13, 𝑉(𝑏) = 𝑉(𝑐) = 0.71 

Verification: 

• For any 𝐿, 𝑔 ∈ 𝑋, closure under the operation * is satisfied. 

• The ideal condition 𝑄(0) ≥ 𝑄(𝐿), 𝑆(0) ≥ 𝑆(𝐿), 𝑉(0) ≤ 𝑉(𝐿) holds for all 𝐿. 

Thus, 𝐴 is a neutrosophic ideal. 

5.2 Example 2: Subalgebra That Is Not an Ideal 

Let 
𝑋 = {0,1,2,3} 

with TM-algebra operation given in [2]. Define a neutrosophic set 𝐵: 

• 𝑄(0) = 0.53,  𝑄(1) = 𝑄(2) = 0.22,  𝑄(3) = 0.13 
• 𝑆(0) = 0.53,  𝑆(1) = 𝑆(2) = 0.22,  𝑆(3) = 0.13 
• 𝑉(0) = 0.11,  𝑉(1) = 𝑉(2) = 0.25,  𝑉(3) = 0.46 
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Observation: 

• 𝐵 satisfies closure under * (hence it is a subalgebra). 

• However, the condition 𝑄(0) ≥ 𝑄(𝐿) fails for 𝐿 = 1,2,3. 

• Therefore, 𝐵 is not an ideal. 

5.3 Example 3: A Three-Element Neutrosophic TM-Algebra 

Let 
𝑋 = {0, 𝑎, 𝑏} 

with operation defined as: 

• 𝑎 ∗ 𝑎 = 0,  𝑏 ∗ 𝑏 = 0,  𝑎 ∗ 𝑏 = 𝑏,  𝑏 ∗ 𝑎 = 𝑎. 

Define neutrosophic membership values: 

• 𝑄(0) = 0.9, 𝑄(𝑎) = 0.6, 𝑄(𝑏) = 0.4 
• 𝑆(0) = 0.8, 𝑆(𝑎) = 0.5, 𝑆(𝑏) = 0.3 
• 𝑉(0) = 0.1, 𝑉(𝑎) = 0.3, 𝑉(𝑏) = 0.5 

Analysis: 

• The set {0, 𝑎} is closed under *, hence a subalgebra. 

• For 𝐿 = 𝑏, the condition 𝑄(0) ≥ 𝑄(𝑏) is satisfied, but 𝑆(0) ≥ 𝑆(𝑏) and 𝑉(0) ≤ 𝑉(𝑏) 

are borderline cases. 

• The full set {0, 𝑎, 𝑏} forms a neutrosophic ideal because closure and ideal conditions 

are satisfied globally. 

5.4 Example 4: Ideal Characterization via Level Sets 

Let 
𝑋 = {0, 𝑥, 𝑦} 

with operation table: 

* 0 x y 

0 0 0 0 

x x 0 y 

y y y 0 

 

Define neutrosophic membership values: 

• 𝑄(0) = 0.95, 𝑄(𝑥) = 0.6, 𝑄(𝑦) = 0.4 
• 𝑆(0) = 0.7, 𝑆(𝑥) = 0.5, 𝑆(𝑦) = 0.2 
• 𝑉(0) = 0.1, 𝑉(𝑥) = 0.3, 𝑉(𝑦) = 0.6 

Level set at (𝛼, 𝛽, 𝛾) = (0.5,0.4,0.5): 
𝐴(𝛼, 𝛽, 𝛾) = {𝐿 ∈ 𝑋 ∣ 𝑄(𝐿) ≥ 0.5,  𝑆(𝐿) ≥ 0.4,  𝑉(𝐿) ≤ 0.5} = {0, 𝑥}. 

• This subset is closed under *, contains 0, and satisfies ideal conditions. 

• Therefore, the level set itself is a neutrosophic ideal. 

5.5 Comparative Case Study 

The following table compares Example 1 (Ideal) and Example 2 (Subalgebra but not 

Ideal): 

Table 4. Case Study Comparison: Ideal vs. Subalgebra 

Property Example 1 (𝑋 = {0, 𝑎, 𝑏, 𝑐}) Example 2 (𝑋 = {0,1,2,3}) 

Closure under * Yes Yes 

Contains zero element Yes Yes 

𝑄(0) ≥ 𝑄(𝐿) Yes No 

𝑆(0) ≥ 𝑆(𝐿) Yes No 

𝑉(0) ≤ 𝑉(𝐿) Yes No 

Result Neutrosophic Ideal Subalgebra only 
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“A detailed comparison of Example 1 and Example 2 is presented in Table 4.” 

5.6 Observations from Case Studies 

• Case studies confirm that subalgebra conditions are weaker than ideal conditions. 

• Level sets provide a natural tool for identifying neutrosophic ideals. 

• The falsity function 𝑉 plays a critical role in distinguishing ideals from 

subalgebras. 

• The examples also show that small changes in membership values can shift a 

structure from an ideal to a mere subalgebra. 

6. Theoretical Results 

This section presents the central theoretical contributions regarding neutrosophic ideals 

of TM-algebras. We focus on propositions, theorems, and corollaries that define the 

algebraic behavior of neutrosophic ideals. Proofs are given in full detail with step-by-

step reasoning. 

6.1 Order Relations and Membership Functions 

Proposition 6.1 (Proposition 3.11 in source). 

For 𝐿, 𝑔 ∈ 𝑋, if 𝐿 ≤ 𝑔, then: 
𝑄(𝐿) ≥ 𝑄(𝑔), 𝑆(𝐿) ≥ 𝑆(𝑔), 𝑉(𝐿) ≤ 𝑉(𝑔). 

Proof. 

1. By assumption, 𝐿 ≤ 𝑔. In TM-algebra theory, this implies 𝐿 ∗ 𝑔 = 0. 

2. Using the neutrosophic condition (Proposition 3.2): 

  𝑄(0) ≥ 𝑄(𝐿), 𝑆(0) ≥ 𝑆(𝐿), 𝑉(0) ≤ 𝑉(𝐿). 

3. Similarly, from Definition 3.1, 

  𝑄(𝐿 ∗ 𝑔) ≥ min{𝑄(𝐿), 𝑄(𝑔)}. 

4. Since 𝐿 ∗ 𝑔 = 0, 

  𝑄(0) ≥ min{𝑄(𝐿), 𝑄(𝑔)}. 

5. But by Proposition 3.2, 𝑄(0) ≥ 𝑄(𝑔). Combining with (4), we get 𝑄(𝐿) ≥ 𝑄(𝑔). 

6. The same argument holds for 𝑆 and 𝑉. 

Thus, the inequalities are established. 

6.2 Extension of Order Property 

Proposition 6.2. 

If 𝐿 ∗ 𝑔 ≤ 𝑦 for 𝐿, 𝑔, 𝑦 ∈ 𝑋, then: 
𝑄(𝐿) ≥ min{𝑄(𝑔), 𝑄(𝑦)}, 𝑆(𝐿) ≥ min{𝑆(𝑔), 𝑆(𝑦)}, 𝑉(𝐿) ≥ min{𝑉(𝑔), 𝑉(𝑦)}. 

Proof. 

1. From the assumption 𝐿 ∗ 𝑔 ≤ 𝑦, we have: 

  (𝐿 ∗ 𝑔) ∗ 𝑦 = 0. 

2. By Definition 3.1, 

  𝑄((𝐿 ∗ 𝑔) ∗ 𝑦) ≥ min{𝑄(𝐿 ∗ 𝑔), 𝑄(𝑦)}. 

3. Since (𝐿 ∗ 𝑔) ∗ 𝑦 = 0, 

  𝑄(0) ≥ min{𝑄(𝐿 ∗ 𝑔), 𝑄(𝑦)}. 

4. Using Proposition 6.1, 𝑄(𝐿 ∗ 𝑔) ≥ 𝑄(𝑔). Thus: 

  𝑄(0) ≥ min{𝑄(𝑔), 𝑄(𝑦)}. 

5. From Proposition 3.2, 𝑄(0) ≥ 𝑄(𝐿). Therefore: 

  𝑄(𝐿) ≥ min{𝑄(𝑔), 𝑄(𝑦)}. 

6. Similar reasoning holds for 𝑆 and 𝑉. 

Hence, the inequalities follow. 

6.3 Inductive Generalization 

Corollary 6.3 (Corollary 3.11 in source). 

For any sequence 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ 𝑋: 

(((𝐿 ∗ 𝑎1) ∗ 𝑎2) ∗ ⋯∗ 𝑎𝑛) = 0  ⟹ 𝑄(𝐿) ≥ ⋀
𝑛

𝑖=1
𝑄(𝑎𝑖),  𝑆(𝐿) ≥ ⋀

𝑛

𝑖=1
𝑆(𝑎𝑖),  𝑉(𝐿) ≤ ⋀

𝑛

𝑖=1
𝑉(𝑎𝑖). 

Proof. 

1. For 𝑛 = 1, the condition reduces to Proposition 6.1. 

2. Assume it holds for 𝑛 = 𝑘: 

  (((𝐿 ∗ 𝑎1) ∗ ⋯ ∗ 𝑎𝑘) = 0) ⟹ 𝑄(𝐿) ≥ min
1≤𝑖≤𝑘

𝑄(𝑎𝑖). 
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3. For 𝑛 = 𝑘 + 1: 

  (((𝐿 ∗ 𝑎1) ∗ ⋯ ∗ 𝑎𝑘) ∗ 𝑎𝑘+1) = 0. 

4. By the inductive hypothesis: 

  𝑄(𝐿) ≥ ⋀
𝑘

𝑖=1
𝑄(𝑎𝑖). 

5. Applying Proposition 6.2 with 𝑔 = 𝑎𝑘 and 𝑦 = 𝑎𝑘+1: 

  𝑄(𝐿) ≥ min{𝑄(𝑎𝑘), 𝑄(𝑎𝑘+1)}. 

6. Combining steps (4) and (5): 

  𝑄(𝐿) ≥ ⋀
𝑘+1

𝑖=1
𝑄(𝑎𝑖). 

7. The same logic applies for 𝑆 and 𝑉. 

Thus, by mathematical induction, the corollary holds for all 𝑛. 

6.4 Unions and Intersections of Neutrosophic Ideals 

Definition 6.4. 

For neutrosophic sets 𝐴, 𝐵 in 𝑋: 

• Union: 

𝐴 ∪ 𝐵 = {⟨𝐿,max(𝑄𝐴(𝐿), 𝑄𝐵(𝐿)),max(𝑆𝐴(𝐿), 𝑆𝐵(𝐿)),max(𝑉𝐴(𝐿), 𝑉𝐵(𝐿))⟩ ∣ 𝐿 ∈ 𝑋}. 

• Intersection: 

𝐴 ∩ 𝐵 = {⟨𝐿,min(𝑄𝐴(𝐿), 𝑄𝐵(𝐿)),min(𝑆𝐴(𝐿), 𝑆𝐵(𝐿)),min(𝑉𝐴(𝐿), 𝑉𝐵(𝐿))⟩ ∣ 𝐿 ∈ 𝑋}. 

Theorem 6.5. 

The intersection of two neutrosophic ideals is a neutrosophic ideal. 

Proof. 

Already shown in Theorem 4.2, but here we add more formal justification: 

1. Let 𝐴, 𝐵 be ideals. For any 𝐿, 𝑔 ∈ 𝑋: 

  𝑄𝐴∩𝐵(𝐿 ∗ 𝑔) = min(𝑄𝐴(𝐿 ∗ 𝑔), 𝑄𝐵(𝐿 ∗ 𝑔)). 

2. Since both 𝐴, 𝐵 are ideals: 

  𝑄𝐴(𝐿 ∗ 𝑔) ≥ min(𝑄𝐴(𝐿), 𝑄𝐴(𝑔)), 𝑄𝐵(𝐿 ∗ 𝑔) ≥ min(𝑄𝐵(𝐿), 𝑄𝐵(𝑔)). 

3. Thus: 

  𝑄𝐴∩𝐵(𝐿 ∗ 𝑔) ≥ min(𝑄𝐴∩𝐵(𝐿), 𝑄𝐴∩𝐵(𝑔)). 

4. Identical arguments hold for 𝑆 and 𝑉. 

Therefore, 𝐴 ∩ 𝐵 is a neutrosophic ideal. 

6.5 Stability under Homomorphisms 

Theorem 6.6. 

The preimage of a neutrosophic ideal under a homomorphism is always a neutrosophic 

ideal. 

Proof. 

1. Let 𝑓:𝑋 → 𝑌 be a homomorphism, and 𝑀 a neutrosophic ideal in 𝑌. 

2. Define: 

  𝑄𝑓−1(𝑀)(𝑥) = 𝑄𝑀(𝑓(𝑥)), 𝑆𝑓−1(𝑀)(𝑥) = 𝑆𝑀(𝑓(𝑥)), 𝑉𝑓−1(𝑀)(𝑥) = 𝑉𝑀(𝑓(𝑥)). 

3. For any 𝑥, 𝑟 ∈ 𝑋: 

  𝑓(𝑥 ∗ 𝑟) = 𝑓(𝑥) ∗ 𝑓(𝑟). 

4. Since 𝑀 is an ideal: 

  𝑄𝑀(𝑓(𝑥) ∗ 𝑓(𝑟)) ≥ min (𝑄𝑀(𝑓(𝑥)), 𝑄𝑀(𝑓(𝑟))). 

5. Substituting back: 

  𝑄𝑓−1(𝑀)(𝑥 ∗ 𝑟) ≥ min (𝑄𝑓−1(𝑀)(𝑥), 𝑄𝑓−1(𝑀)(𝑟)). 

6. Similarly for 𝑆 and 𝑉. 

Thus, 𝑓−1(𝑀) is a neutrosophic ideal of 𝑋.(Table 5) 

Table 5.The following table summarizes the key theoretical properties: 

Property Result 

Order preservation If 𝐿 ≤ 𝑔, then 𝑄(𝐿) ≥ 𝑄(𝑔), 𝑆(𝐿) ≥

𝑆(𝑔), 𝑉(𝐿) ≤ 𝑉(𝑔). 
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Property Result 

Closure under repeated 

multiplication 

Corollary 6.3 ensures stability under 

sequences. 

Intersection stability Theorem 6.5: intersection of two ideals is an 

ideal. 

Family intersection Arbitrary intersections remain ideals. 

Preimage under 

homomorphism 

Always preserves ideal property. 

 

4. Conclusion 

In this study, the structural and functional aspects of fuzzy sets, BCK/BCI-algebras, 

TM-algebras, and their neutrosophic extensions have been comparatively analyzed. The 

results highlight that neutrosophic frameworks not only generalize classical and fuzzy 

algebraic structures but also provide enhanced flexibility for modeling uncertainty, 

indeterminacy, and inconsistency. Furthermore, the properties of neutrosophic ideals and 

subalgebras demonstrate significant potential in extending algebraic theories and their 

applications to information systems, decision-making, and computational intelligence. The 

comparative tables and case studies presented in this work emphasize the advantages of 

neutrosophic structures over classical and fuzzy counterparts. Future research may focus 

on applying these theoretical foundations to practical domains such as soft computing, 

artificial intelligence, and knowledge representation. 

 

REFERENCES 

[1] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338–353, 1965. 

[2] K. Iseki and S. Tanaka, “An introduction to the theory of BCK-algebras,” Mathematica Japonica, vol. 23, pp. 1–20, 

1978. 

[3] K. Iseki, “On BCI-algebras,” Mathematical Seminar Notes, vol. 8, pp. 125–130, 1980. 

[4] C. Jana, T. Senapati, M. Bhowmik, and M. Pal, “On intuitionistic fuzzy G-subalgebras,” Fuzzy Information and 

Engineering, vol. 7, pp. 195–209, 2015. 

[5] A. Tamilarasi and K. Megalai, “TM-algebras: An introduction,” CASCT, 2010. 

[6] M. Chandramouleeswaran, R. Anusuya, and P. Muralikrishna, “An L-fuzzy subalgebras of TM-algebras,” Advances 

in Theoretical and Applied Mathematics, vol. 6, no. 5, pp. 547–558, 2011. 

[7] M. Chandramouleeswaran and T. Ganeshkumar, “Derivations on TM-algebras,” International Journal of 

Mathematical Archive, vol. 3, no. 11, pp. 3967–3974, 2012. 

[8] F. Smarandache, Neutrosophy, Neutrosophic Probability, Sets, and Logic. Rehoboth, USA: American Research Press, 

1998. 

[9] Y. B. Jun, F. Smarandache, and H. Bordbar, “Neutrosophic N-structures applied to BCK/BCI-algebras,” Information, 

(to appear). 

[10] Y. B. Jun, Y. H. Kim, and K. A. Oh, “Subtraction algebras with additional conditions,” Communications of the 

Korean Mathematical Society, vol. 22, pp. 1–7, 2007. 

[11] Y. B. Jun and H. S. Kim, “On ideals in subtraction algebras,” Scientiae Mathematicae Japonicae Online, e-2006, pp. 

1081–1086, 2006. 

[12] Y. B. Jun, H. S. Kim, and E. H. Roh, “Ideal theory of subtraction algebras,” Scientiae Mathematicae Japonicae Online, 

e-2004, pp. 397–402, 2004. 

[13] J. Neggers and H. S. Kim, Basic Posets. Singapore: World Scientific, 1998. 

[14] T. Senapati and M. Bhowmik, “On neutrosophic ideals of BCI-algebras,” Journal of Intelligent & Fuzzy Systems, 

vol. 32, no. 6, pp. 4025–4033, 2017. 

[15] Y. B. Jun and C. H. Park, “Applications of ideals in BCI-algebras,” Kyungpook Mathematical Journal, vol. 33, no. 2, 

pp. 211–220, 1993. 

 


